La Doped Layered Structure Low-Voltage ZnO Varistor

2012 ◽  
Vol 512-515 ◽  
pp. 1263-1267
Author(s):  
Xing Gao ◽  
Guo You Gan ◽  
Li Hui Wang ◽  
Ji Kang Yan ◽  
Jian Hong Yi ◽  
...  

A novel fabricated technique, by feeding two sets of different ZnO formulations powder in a die by parts, molded only once to produce layered structure(including layer A and layer B) low-voltage ZnO varistor. The samples are examined by using energy dispersive X-ray spectroscopy (EDS), electron probe microanalysis (EPMA), scanning electron microscope (SEM) and DC electrical measurements. EDS and EPMA data indicate that doped elements only exists in layer A, The results of SEM indicate that secondary phases are formed at grain boundaries in layer A, not found in layer B. It is found that the electrical properties of low-voltage varistor are improved without reducing thickness and changing energy absorption capabilities. The higher nonlinearity coefficients, lower breakdown fields and leakage currents of layered structure low-voltage ZnO varistor, as compared to those of ZnO varistor fabricated from the conventional route. The improved current-voltage properties are attributed to the band structure difference in both sides grains, due to the different ion concentration and species in both sides of grain boundary. Layered structure varistor also has more simpler prepared technology than multilayer chip varistor.

Author(s):  
LiLung Lai ◽  
Nan Li ◽  
Qi Zhang ◽  
Tim Bao ◽  
Robert Newton

Abstract Owing to the advancing progress of electrical measurements using SEM (Scanning Electron Microscope) or AFM (Atomic Force Microscope) based nanoprober systems on nanoscale devices in the modern semiconductor laboratory, we already have the capability to apply DC sweep for quasi-static I-V (Current-Voltage), high speed pulsing waveform for the dynamic I-V, and AC imposed for C-V (Capacitance-Voltage) analysis to the MOS devices. The available frequency is up to 100MHz at the current techniques. The specification of pulsed falling/rising time is around 10-1ns and the measurable capacitance can be available down to 50aF, for the nano-dimension down to 14nm. The mechanisms of dynamic applications are somewhat deeper than quasi-static current-voltage analysis. Regarding the operation, it is complicated for pulsing function but much easy for C-V. The effective FA (Failure Analysis) applications include the detection of resistive gate and analysis for abnormal channel doping issue.


2012 ◽  
Vol 1465 ◽  
Author(s):  
Paul Farrar ◽  
Del Atkinson ◽  
Andrew J. Gallant

ABSTRACTBiologically relevant lipid bilayers supported on highly ordered pyrolytic graphite (HOPG) were probed both mechanically and electrically with a Conductive Atomic Force Microscope (C-AFM) capable of measuring ultra-low currents. Results show that these membranes undergo an elastic response up to 26 nN on average when compressed with an AFM tip. Measuring the films with a low contact force demonstrates that contact mode AFM can be used repeatedly to image without damaging the film. Based on current-voltage measurements made with the C-AFM, it is shown that apparently high resistances seen for the films could be the result of variable electrical contact between the tip and surface. As a result, the paper proposes that the deflection of the cantilever should always be measured in order to ensure knowledge of the location of the tip during all electrical measurements.


1996 ◽  
Vol 424 ◽  
Author(s):  
S. D. Theiss ◽  
S. Wagner

AbstractWe describe the successful fabrication of device-quality a-Si:H thin-film transistors (TFTs) on stainless-steel foil substrates. These TFTs demonstrate that transistor circuits can be made on a flexible, non-breakable substrate. Such circuits could be used in reflective or emissive displays, and in other applications that require rugged macroelectronic circuits.Two inverted TFT structures have been made, using 200 gim thick stainless steel foils with polished surfaces. In the first structure we used the substrate as the gate and utilized a homemade mask set with very large feature sizes: L = 45 μm; W = 2.5 mm. The second, inverted staggered, structure used a 9500 Å a-SiNx:H passivating/insulating layer deposited on the steel to enable the use of isolated gates. For this structure we used a mask set which is composed of TFTs with much smaller feature sizes. Both TFT structures exhibit transistor action. Current-voltage characterization of the TFTs with the inverted staggered structure shows typical on/off current ratios of 107, leakage currents on the order of 10-12 A, good linear and saturation current behavior, and channel mobilities of 0.5 cm2/V·sec. These characteristics clearly identify the TFTs grown on stainless steel foil as being of device quality.


2013 ◽  
Vol 37 (3) ◽  
pp. 325-333 ◽  
Author(s):  
Wen-Yang Chang ◽  
Cheng-Hung Hsu

The electromechanical characteristics of PVDF are investigated, including the crystallization, frequency responses, hysteresis, leakage currents, current-voltage characteristics, and fatigue characteristics using X-ray diffraction and an electrometer. Results show that the frequency band of PVDF increases with increasing resistive load and capacitance. The hysteresis area of ΔH slightly increases with increasing input voltage. The magnitude of the current values increases with decreasing delay time at a given drive voltage. PVDF film induced larger degradation when the number of stress cycles was increased to about 105 cumulative cycles.


2021 ◽  
Author(s):  
EMINE ALDIRMAZ ◽  
M. Güler ◽  
E. Güler

Abstract In this study, the Cu-23.37%Zn-13.73%Al-2.92%Mn (at.%) alloy was used. Phase identification was performed with the Scanning electron microscope (SEM), and energy-dispersive X-ray (EDX). We observed in the austenite phase in Cu-23.37%Zn-13.73%Al-2.92%Mn (at.%) alloy. To produce a new Schottky diode, CuZnAlMn alloy was exploited as a Schottky contact on p-type semiconductor silicon substrate. To calculate the characteristics of the produced diode, current-voltage (I-V), capacitance-voltage (C-V) and conductance-voltage (G-V) analyzes were taken at room temperature (300 K), in the dark and under various lights. Using electrical measurements, the diode's ideality factor (n), barrier height (Φb), and other diode parameters were calculated. Besides, the conductance / capacitance-voltage (G/C-V) characteristics of the diode were studied and in a wide frequency interval at room temperature. Also, the capacitance and conductance values strongly ​​ rely on the frequency. From the present experimental results, the obtained diode can be used for optoelectronic devices.


2015 ◽  
Vol 9 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Vandana Kumari ◽  
Anusaiya Kaswan ◽  
Dinesh Patidar ◽  
Narendra Saxena ◽  
Kananbala Sharma

Current-voltage characteristics and DC electrical conductivity were studied for Ge30-xSe70Snx (x = 8, 11, 14, 17 and 20) glassy thin pellets of diameter 12mm and thickness 1mm prepared under a constant load of 5 tons using a well-known melt quenching technique in bulk as a function of composition. The I-V characteristics were recorded at room temperature as well as elevated temperatures up to 300?C. The experimental data suggests that glass containing 20 at.% of Sn has the minimum resistance allowing maximum current through the sample as compared to other counterparts of the series. Therefore, DC conductivity is found to increase with increasing Sn concentration. Composition dependence of DC conductivity is discussed in terms of the bonding between Se and Sn. Plots between ln I and V1/2 provide linear relationship for both low and high voltage range. These results have been explained through the Pool-Frenkel mechanism. The I-V characteristics show ohmic behaviour in the low voltage range and this behaviour turns to non-ohmic from ohmic in the higher voltage range due to voltage induced temperature effects.


2001 ◽  
Vol 672 ◽  
Author(s):  
S. Bhaskar ◽  
S. B. Majumder ◽  
P. S. Dobal ◽  
S. B. Krupanidhi ◽  
R. S. Katiyar

ABSTRACTSol-Gel derived Pb0.85La0.15TiO3 PLT15) thin films were deposited on solution derived RuO2/Si, RuO2/Pt/Si and Pt bottom electrodes. Dielectric, tangent loss, hysteresis, J-E, measurements were also carried out on these films. X-ray results established the single phase perovskite formation with no secondary phases of PLT15 thin film on these electrodes. PLT15 thin films on RuO2 bottom electrode showed relatively inferior ferroelectric and dielectric behavior as compared to Pt electrode. Low leakage currents (10-8 A/cm2 at 10 kV/cm) and the observed J-E characteristics have been attributed to poor film-electrode interface. Observed electrical and dielectric properties have been correlated with the film-electrode interface. The interface characteristics were further augmented by depth profile analysis using Auger Electron Spectroscopy.


2013 ◽  
Vol 537 ◽  
pp. 114-117
Author(s):  
X.A. Mei ◽  
Rui Fang Liu ◽  
C.Q. Huang ◽  
J. Liu

La-doped bismuth titanate (Bi4-xLaxTi3O12: BLT) and pure Bi4Ti3O12 (BIT) thin films with random orientation were fabricated on Pt/Ti/SiO2/Si substrates by rf magnetron sputtering technique. These samples had polycrystalline Bi-layered perovskite structure without preferred orientation, and consisted of well developed rod-like grains with random orientation. For the samples with x=0.25 and 1.0 the current-voltage characteristics exhibited negative differential resistance behaviors and their P-V hysteresis loops were characterized by large leakage current, whereas for the samples with x=0.5 and 0.75 the current-voltage characteristics showed simple ohmic behaviors and their P-V hysteresis loops were the saturated and undistorted hysteresis loops. The remanent polarization ( Pr ) and coercive field (Ec) of the BLT ceramic with x=0.75 were above 20μC/cm2 and 85KV/cm , respectively.


Author(s):  
Yury V. LISAKOV ◽  
Olga V. LAPSHINOVA ◽  
Nikolay M. PUSHKIN ◽  
Viktor P. KONOSHENKO ◽  
Nikolay V. MATVEEV ◽  
...  

The paper presents the results of analysis of electrical measurements performed in the space experiment "Impulse (stage 1)" on the Service module of the ISS RS. This experiment investigated the effects of the interaction of the charged component of the ionosphere to the surface of large KA, which is the ISS. This paper analyses the measurement of quasi-stationary electric field and current leakage, was, respectively, sensors of the vibration type and flat probes from the Complex control electrophysical parameters (CCEP), developed by SPJ MT. To study the dependence of measurements from the ionosphere flow direction to the surface of the ISS RS was installed two sets of sensors with the direction of the angle of "visibility" in the Nadir (towards the Earth) and to "satellite footprint " (against the velocity vector of the ISS). Carried out analysis of common regularities measurements depending on the sun-shadow environment on orbit ISS motions and depending on current geophysical dynamics of the ionosphere. Massive the measurements including more than 170 telemetric sessions were analyzed. More than 11000 hours of measurements current of leakage (or runoff current) and measurements of quasi-stationary electric field with discretization 1s and UT binding to each point were analysed. The data measurements, geophysical and orbital data were collected in an electronic album. It is shown that experimental data correlate with the crossing time of the ISS boundaries known geophysical structures: the noon Meridian, the Main ionospheric failure (MIF), the boundaries diffuse intrusion (BDI), the Equatorial Geomagnetic anomaly (EA). In this regard, despite the specificity of the ISS (the spacecraft super big sizes, the most complex spatial configuration) similar measurements, nevertheless, are quite suitable for monitoring researches of some features of an ionosphere at the level of F2 layer with a temporary scale from 1s and can be used for more detailed study of the geophysical structures and related effects in the ionosphere. In addition, the results obtained can be used for the analysis of disturbances of electromagnetic conditions near the surface of the ISS RS, for monitoring potential and currents of leakage on the surface of the ISS. Keywords: electrophysical measurements, sensors of the vibration type, flat probes, electric field, current leakage, geophysical structure, ionosphere


Sign in / Sign up

Export Citation Format

Share Document