Fabrication and Properties of High Strength Al-8Fe-2Mo-2V-1Zr Alloy Produced by Melt Spinning Techniques

2006 ◽  
Vol 510-511 ◽  
pp. 854-857 ◽  
Author(s):  
Taek Kyun Jung ◽  
Dong Suk Lee ◽  
Mok Soon Kim ◽  
Won Yong Kim

High strength Al-8Fe-2Mo-2V-1Zr (wt.%) alloys fabricated by a melt spinning and a hot extrusion process were produced to correlate the microstructure and mechanical property. Melt spun ribbon prepared by single roll melt spinner showed a cellular structure with an average size of 10nm and Al-Fe based intermetallic dispersoid of less than 10nm in particle size. The melt spun ribbon obtained was then pulverized to make a powder shape followed by hot extrusion at 648K, 673K, 723K and 773K in extrusion ratio of 5 to 1, respectively. Equiaxed grain structure containing Al-Fe based intermetallic phase was observed in all extruded specimens. According to increasing extrusion temperature, the grain size increased and particle size of intermetallic dispersoid. The lattice parameter increased from 0.4051nm to 0.4059 nm with increasing extrusion temperature from 648K to 773K, those values were larger than that obtained in pure Al (0.4049nm). Yield strength of the specimen extruded at 648K measured to 956MPa at room temperature, 501MPa at 573K and 83MPa at 773K, respectively. With increasing extrusion temperature yield strength decreased significantly at room temperature and even in the intermediate temperature range, while no noticeable difference in yield strength was observed at 773K.

2014 ◽  
Vol 14 (2) ◽  
pp. 57-62
Author(s):  
M. Szymaneka ◽  
B. Augustyn ◽  
D. Kapinos ◽  
S. Boczkal ◽  
J. Nowak

Abstract In the aluminium alloy family, Al-Zn materials with non-standard chemical composition containing Mg and Cu are a new group of alloys, mainly owing to their high strength properties. Proper choice of alloying elements, and of the method of molten metal treatment and casting enable further shaping of the properties. One of the modern methods to produce materials with submicron structure is a method of Rapid Solidification. The ribbon cast in a melt spinning device is an intermediate product for further plastic working. Using the technique of Rapid Solidification it is not possible to directly produce a solid structural material of the required shape and length. Therefore, the ribbon of an ultrafine grain or nanometric structure must be subjected to the operations of fragmentation, compaction, consolidation and hot extrusion. In this article the authors focussed their attention on the technological aspect of the above mentioned process and described successive stages of the fabrication of an AlZn9Mg2.5Cu1.8 alloy of ultrafine grain structure designated for further plastic working, which enables making extruded rods or elements shaped by the die forging technology. Studies described in the article were performed under variable parameters determined experimentally in the course of the alloy manufacturing process, including casting by RS and subsequent fragmentation.


2007 ◽  
Vol 534-536 ◽  
pp. 765-768 ◽  
Author(s):  
Taek Kyun Jung ◽  
T.J. Sung ◽  
Mok Soon Kim ◽  
Won Yong Kim

Al-8Fe-2Mo-2V-1Zr alloy powders were prepared by gas atomization and melt spinning method. In melt spinning technique, melt spun ribbons were pulverized by a speed rotor mill to make a powder shape. In order to produce a bulk form, powders were canned and hot extruded in the extrusion ratio of 25 to 1 at 693K. For the gas atomization and hot extrusion processed bulk material, equiaxed grains with the average size of 400 nm and finely distributed dispersoids with their particle sizes ranging from 50nm to 200nm were observed to display a characteristic nano-structured feature over the entire region. For the melt spun and hot extrusion processed alloy, a refined microstructural feature consisting of equiaxed grains with the average size of 200 nm and fine dispersoids with their particle sizes under 50 nm appeared to exhibit a difference in microstructure. Yield strength of the latter alloy was higher than that for the former alloy up to elevated temperatures. The maximum yield strength was measured to about 800 MPa at room temperature for the latter alloy.


2013 ◽  
Vol 738-739 ◽  
pp. 436-440 ◽  
Author(s):  
Krystian Prusik ◽  
Katarzyna Bałdys ◽  
Danuta Stróż ◽  
Tomasz Goryczka ◽  
Józef Lelątko

In present paper two ribbons of the Ni44Co6Mn36In14 (at.%) were prepared under different melt-spinning technique conditions. Microstructure of the ribbons was studied by scanning electron microscopy (SEM). Depending on the liquid ejection overpressure two types of ribbons microstructures were observed. Ribbon T1 for which ejection overpressure was 1.5 bar showed typical melt-spun ribbon microstructure consisting of a top layer of small equi-axial grains and columnar grains below. For T2 ribbon (ejection overpressure 0.2 bar) only a small fraction of the columnar grains were observed. Structure analysis of the ribbons performed by XRD showed that at room temperature both ribbons have B2 parent phase superstructure. No gamma phase precipitates were observed. In order to determine the orientation of the grains the EBSD technique was applied.


Author(s):  
Mehdi Soltan Ali Nezhad ◽  
Sadegh Ghazvinian ◽  
Mahmoud Amirsalehi ◽  
Amir Momeni

Abstract Three steels were designed based on HSLA-100 with additional levels of Mn, Ni, Cr and Cu. The steels were prepared by controlled rolling and tempered at temperatures in range of 550–700°C. The continuous cooling time curves were shifted to longer times and lower temperatures with the increased tendency for the formation of martensite at lower cooling rates. The microstructures revealed that controlled rolling results in austenite with uniform fine grain structure. The steel with the highest amount of Mn showed the greatest strength after tempering at 750 °C. The top strength was attributed to the formation of Cu-rich particles. The steel with 1.03 wt.% Mn, tempered at 650 °C exhibited the best Charpy impact toughness at –85°C. On the other hand, the steel that contained 2.11 wt.% Mn and tempered at 700 °C showed the highest yield strength of 1 097.5 MPa (∼159 ksi) and an impact toughness of 41.6 J at –85°C.


2021 ◽  
Vol 21 (4) ◽  
pp. 2552-2557
Author(s):  
Nguyen Hai Yen ◽  
Nguyen Hoang Ha ◽  
Pham Thi Thanh ◽  
Nguyen Huy Ngoc ◽  
Tran Dang Thanh ◽  
...  

In this work, we investigated magnetic properties and magnetocaloric effect in Fe90−xCoxZr7Cu1B2 (x = 0, 1, 2, 3 and 4) melt-spun ribbons. The ribbons were prepared by using a melt-spinning method with a tangential velocity of a copper wheel of 40 m·s-1. The obtained ribbons are almost amorphous. The alloys exhibit typical soft magnetic behavior with low coercivity at room temperature. A minor replacement of Fe by Co gives an increment in Curie temperature (TC) of the alloys to higher temperatures. The TC of the alloys increases from 242 to 342 K with an increase of x from 0 to 4. Maximum magnetic entropy change, ΔSm max, of the alloys, was found to be larger than 0.7 J·kg-1·K-1 in a magnetic field change ΔH of 12 kOe for all the concentrations of Co. High refrigerant capacitys (RC >100 J ·kg-1 with ΔH = 12 kOe) at room temperature region have been obtained for the alloys. The large magnetocaloric effect near room temperature suggests that the alloys can be considered as magnetic refrigerants in the range of 250–350 K.


2007 ◽  
Vol 539-543 ◽  
pp. 2725-2730 ◽  
Author(s):  
T. Mrotzek ◽  
Andreas Hoffmann ◽  
U. Martin ◽  
H. Oettel

The molybdenum alloy TZM (Mo-0.5wt%Ti-0.08wt%Zr) is a commonly used structural material for high temperature applications. For these purposes a high strength at elevated temperatures and also a sufficient ductility at room temperature are being aimed. Preceding investigations revealed the existence of subgrains in hot deformed TZM. It was observed that with proceeding primary recrystallization and therefore with disappearance of subgrains the yield strength drops almost to a level of pure molybdenum. It is being assumed that the existence of a dislocation substructure has a pronounced effect on the yield strength of TZM. The aim of the present study was to evaluate the subgrain and texture formation and also to estimate the dislocation arrangement within subgrains during hot deformation. Hence, TZM rods were rolled to different degrees of deformation at a temperature above 0.5 Tm. The microstructure of the initial material was fully recrystallized. Texture formation, misorientation distributions and subgrain sizes were analyzed by electron backscattering diffraction (EBSD). Mechanical properties were characterized by tensile tests at room temperature and up to 1200°C. It was revealed, that with increasing degree of deformation a distinct substructure forms and therefore yield strength rises. Consequently, the misorientation between adjacent subgrains increases, their size decreases and a <110> fibre texture develops. To estimate the influence of texture on strength of TZM the Taylor factors are calculated from EBSD data.


2005 ◽  
Vol 486-487 ◽  
pp. 411-414 ◽  
Author(s):  
Won Yong Kim ◽  
Jae Sung Park ◽  
Mok Soon Kim

Mechanical properties of a nano-structured Al-8Fe-2Mo-2V-1Zr alloy produced by spray forming and subsequent hot-extrusion at 420°C were investigated in terms of tensile test as a function of temperature. Warm rolling was adapted as an additional process to expect further refinement in microstructure. Well-defined equiaxed grain structure and finely distributed dispersoids with nano-scale in particle size were observed in the spray formed and hot extruded sample (as-received sample). The average grain size and particle size were measured to 500 nm and 50 nm, respectively. While it was found that warm rolling gives rise to precipitate fine dispersoids less than 10 nm without influencing the grain size of matrix phase, in the temperature range of RT∼150°C, distinguishable changes in ultimate tensile strength were not found between the as-received and warm-rolled samples. At elevated temperatures ranging from 350 to 550°C, warm-rolled sample showed a higher value of elongation than as-received one although similar values of elongation were observed between two samples at temperatures lower than 350°C.


2007 ◽  
Vol 26-28 ◽  
pp. 87-90
Author(s):  
Taek Kyun Jung ◽  
Mok Soon Kim ◽  
W.Y. Kim ◽  
Hyouk Chon Kwon ◽  
S. Yi

The microstructures and mechanical properties of the bulk Al-Fe-(Mo, V, Zr) alloy produced by melt spinning process and subsequent hot extrusion at 693K in the extrusion ratio of 25 to 1 were investigated. TEM observation revealed an equiaxed grain structure with the average grain size of 200 nm for the extruded bulk alloy. Extremely fine dispersoids based on Al-Fe phases, Al-Fe-(Mo, V) phases and Al-Zr phases were observed to be distributed uniformly within grains and at grain boundaries. The size distribution of the binary Al-Fe and the Al-Fe-(Mo, V) phases were ranged from 20 nm to 50 nm, whereas the Al-Zr phase was less than 10 nm. The very high tensile strength of about 800MPa was achieved at room temperature for the extruded bulk alloy.


2016 ◽  
Vol 861 ◽  
pp. 147-152
Author(s):  
Fei Yang ◽  
Brian Gabbitas ◽  
Ajit Singh ◽  
Chung Fu Wang

In this paper, pure titanium rods, with high strength and ductility, were prepared by vacuum sintering titanium powder compacts at 1300oC for 2h and then hot extruding the as-sintered titanium billets at 900oC in air. The microstructure and property changes, after vacuum sintering and hot extrusion, were investigated. The results showed clear evidence of porosity in the microstructure of as-sintered titanium billet and tensile testing of as-sintered material gave yield strength, ultimate tensile strength and ductility values of 570MPa, 602MPa and 4%, respectively. After extrusion at 900oC, no obvious pores could be seen in the microstructure of as-extruded titanium rod, and the mechanical properties were significantly improved. The yield strength, ultimate tensile strength and the ductility reached 650MPa, 705MPa and 20%, respectively, which are much higher than values for CP titanium (grade 4), with a yield strength of 480MPa, ultimate tensile strength of 550MPa and ductility of 15%. The fracture characteristics of as-sintered and as-extruded titanium rods have also been investigated.


2019 ◽  
Vol 234 (11-12) ◽  
pp. 757-767 ◽  
Author(s):  
Mohammed Mundher Jubair ◽  
Mohammed S. Gumaan ◽  
Rizk Mostafa Shalaby

AbstractThis study investigates the structural, mechanical, thermal and electrical properties of B-1 JINHU, EDSYN SAC5250, and S.S.M-1 commercial materials, which have been manufactured at China, Malaysia, and Germany, respectively. The commercial materials have been compared with the measurements of Sn–Ag–Cu (SAC) melt-spun materials that are only indicative of what can be expected for the solder application, where the solder will have quite different properties from the melt-spun materials due to the effects of melt-spinning technique. Adding Cu to the eutectic Sn–Ag melt-spun material with 0.3 wt.% significantly improves its electrical and mechanical properties to serve efficiently under high strain rate applications. The formed Cu3Sn Intermetallic compound (IMC) offers potential benefits, like high strength, good plasticity, consequently, high performance through a lack of dislocations and microvoids. The results showed that adding 0.3 wt.% of Cu has improved the creep resistance and delayed the fracture point, comparing with other additions and commercial solders. The tensile results showed some improvements in 39.3% tensile strength (25.419 MPa), 376% toughness (7737.220 J/m3), 254% electrical resistivity (1.849 × 10−7 Ω · m) and 255% thermal conductivity (39.911 w · m−1 · k−1) when compared with the tensile strength (18.24 MPa), toughness (1625.340 J/m3), electrical resistivity (6.56 × 10−7 Ω · m) and thermal conductivity (11.250 w · m−1 · k−1) of EDSYN SAC5250 material. On the other hand, the Sn93.5–Ag3.5–Cu3 melt-spun solder works well under the harsh thermal environments such as the circuits located under the automobiles’ hood and aerospace applications. Thus, it can be concluded that the melt-spinning technique can produce SAC melt-spun materials that can outperform the B-1 JINHU, EDSYN SAC5250 and S.S.M-1 materials mechanically, thermally and electrically.


Sign in / Sign up

Export Citation Format

Share Document