Adhesion Characterisation of Complex Ceramics Thin Layers Deposited on Metallic Substrate

2017 ◽  
Vol 907 ◽  
pp. 126-133
Author(s):  
Costel Florea ◽  
Costică Bejinariu ◽  
Cristian Savin ◽  
Bogdan Istrate ◽  
Marcelin Benchea ◽  
...  

There was obtained superficial layer of ceramic (made of complex oxides 80% yttrium oxide stabilized zirconium ZrO2/8%Y2O3 (Metco 204B-NS) and 20% alumina Al2O3 (Metco 105SFP)) by plasma jet deposition at a temperature of 12000°C of particles, on substrates of iron FC250. The layers were obtained by five successive passages (60 μm thick) on samples with different surface roughness and different processed (0.34, 2.47 și 4.25 μm). For the analysis of the adhesion of ceramic layers to the substrate scratch tests were carried out and the traces analyzed by scanning electron microscopy (SEM 2D and 3D), chemical analysis EDS, and profilometry. In conclusion, it was obtained compact layers on the samples 2 and 3 with micro-cracks on the surface due to thermal gradient that occurs between the layers deposited during the five passes. Regarding the resistance, the sample with the higher roughness (sample 3) resisted most to exfoliation the layer (15 N) in contrast to the sample 2 of 14N and only 10N for the polished sample. It can be concluded that there is a dependency between the surface roughness and the thickness of layer deposited. Scratch marks presents no cracks, pores or adjacent exfoliation. The results show that the technique is suitable for obtaining thin layers of ceramic materials with a very good control of the thickness, very good adhesion to the substrate and a direct relationship between surface roughness and the quality of deposited layer.

2016 ◽  
Vol 874 ◽  
pp. 15-21 ◽  
Author(s):  
Xiao Shuang Rao ◽  
Fei Hu Zhang ◽  
Chen Li

With some conductivity and low grinding affectivity, a hybrid machining process termed electrical discharge diamond grinding (EDDG) is applied to the precision machining of reaction bonded silicon carbide (RB-SiC) ceramic. As there is electrical spark in the hybrid machining process, the electrical parameters are varied to explore their effects on the surface quality of RB-SiC ceramic with EDDG. In this paper, the experiments of different polarity and gap voltage with EEDG were investigated, and the microstructure and surface roughness on the machined surface of RB-SiC ceramic were analyzed. The surface morphology and micro-cracks were examined with a scanning electron microscope, and the surface roughness was measured with a confocal scanning laser microscope. It is found that surface roughness initially increases and then decreases with increase of the gap voltages and is higher with negative polarity than that with positive polarity. The micromorphology Micro-cracks were observed on the surface machined and are outstanding in re-solidified zone with EDDG.


2011 ◽  
Vol 324 ◽  
pp. 97-100
Author(s):  
Harouna Hassane ◽  
Jean Pierre Chatelon ◽  
Jean Jacques Rousseau ◽  
Ali Siblini ◽  
Adoum Kriga

In this paper, we study the effects of a magnet, located in the cathode, on barium hexaferrite thin films deposited by RF magnetron sputtering technique. During the process, these effects can modify thickness, roughness and stress of coatings. The characteristics of the deposited layers depend on the substrate position that is located opposite of magnetron cathode. In the "magnetron area", one can observe that the high stress can produce cracks or detachment of layers and the increasing of both depositing rate and surface roughness. After sputtering elaboration, barium hexaferrite films are in a compressive stress mode. But, after the post-deposition heat treatment these films are in a tensile stress mode. To improve the quality of BaM films, the subsrtate has to be set outside the magnetron area.


Author(s):  
K. T. Tokuyasu

During the past investigations of immunoferritin localization of intracellular antigens in ultrathin frozen sections, we found that the degree of negative staining required to delineate u1trastructural details was often too dense for the recognition of ferritin particles. The quality of positive staining of ultrathin frozen sections, on the other hand, has generally been far inferior to that attainable in conventional plastic embedded sections, particularly in the definition of membranes. As we discussed before, a main cause of this difficulty seemed to be the vulnerability of frozen sections to the damaging effects of air-water surface tension at the time of drying of the sections.Indeed, we found that the quality of positive staining is greatly improved when positively stained frozen sections are protected against the effects of surface tension by embedding them in thin layers of mechanically stable materials at the time of drying (unpublished).


2020 ◽  
pp. 99-104
Author(s):  
S.A. Zaydes ◽  
A.N. Mashukov ◽  
T.Ya. Druzhinina

The contact belt of the gate assembly is the main part of high pressure fittings. The serviceability of the fittings assembly as whole depends on the air-tightness and quality of the mating surfaces. The technology of diamond burnishing allows to increase the interface of the nodes by red ucing the surface roughness of the metal-to-metal seal. The real experience for improving of the fittings contact belt due to the use of diamond burnishing of the nozzles seats and the conical surface of the rods.


Author(s):  
Florian Kuisat ◽  
Fernando Lasagni ◽  
Andrés Fabián Lasagni

AbstractIt is well known that the surface topography of a part can affect its mechanical performance, which is typical in additive manufacturing. In this context, we report about the surface modification of additive manufactured components made of Titanium 64 (Ti64) and Scalmalloy®, using a pulsed laser, with the aim of reducing their surface roughness. In our experiments, a nanosecond-pulsed infrared laser source with variable pulse durations between 8 and 200 ns was applied. The impact of varying a large number of parameters on the surface quality of the smoothed areas was investigated. The results demonstrated a reduction of surface roughness Sa by more than 80% for Titanium 64 and by 65% for Scalmalloy® samples. This allows to extend the applicability of additive manufactured components beyond the current state of the art and break new ground for the application in various industrial applications such as in aerospace.


Author(s):  
Santosh Kumar ◽  
Vimal Edachery ◽  
Swamybabu Velpula ◽  
Avinash Govindaraju ◽  
Sounak K. Choudhury ◽  
...  

Clinching is an economical sheet joining technique that does not require any consumables. Besides, after its usage, the joints can be recycled without much difficulty, making clinching one of the most sustainable and eco-friendly manufacturing processes and a topic of high research potential. In this work, the influence of surface roughness on the load-bearing capacity (strength) of joints made by the mechanical clinching method in cross-tensile and lap-shear configuration is explored. Additionally, a correlating mathematical model is established between the joint strength and its surface parameters, namely, friction coefficient and wrap angle, based on the belt friction phenomenon. This correlation also explains the generally observed higher strength in lap-shear configuration compared to cross-tensile in clinching joints. From the mathematical correlation, through friction by increasing the average surface roughness, it is possible to increase the strength of the joint. The quality of the thus produced joint is analyzed by cross-sectional examination and comparison with simulation results. Experimentally, it is shown that an increment of >50% in the joint strength is achieved in lap-shear configuration by modifying the surface roughness and increasing the friction coefficient at the joint interface. Further, the same surface modification does not significantly affect the strength in cross-tensile configuration.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 900
Author(s):  
Maria Vardaki ◽  
Aida Pantazi ◽  
Ioana Demetrescu ◽  
Marius Enachescu

In this work we present the results of a functional properties assessment via Atomic Force Microscopy (AFM)-based surface morphology, surface roughness, nano-scratch tests and adhesion force maps of TiZr-based nanotubular structures. The nanostructures have been electrochemically prepared in a glycerin + 15 vol.% H2O + 0.2 M NH4F electrolyte. The AFM topography images confirmed the successful preparation of the nanotubular coatings. The Root Mean Square (RMS) and average (Ra) roughness parameters increased after anodizing, while the mean adhesion force value decreased. The prepared nanocoatings exhibited a smaller mean scratch hardness value compared to the un-coated TiZr. However, the mean hardness (H) values of the coatings highlight their potential in having reliable mechanical resistances, which along with the significant increase of the surface roughness parameters, which could help in improving the osseointegration, and also with the important decrease of the mean adhesion force, which could lead to a reduction in bacterial adhesion, are providing the nanostructures with a great potential to be used as a better alternative for Ti implants in dentistry.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2916
Author(s):  
Ondrej Hanzel ◽  
Zoltán Lenčéš ◽  
Peter Tatarko ◽  
Richard Sedlák ◽  
Ivo Dlouhý ◽  
...  

Three and five-layered silicon carbide-based composites containing 0, 5, and 15 wt.% of graphene nanoplatelets (GNPs) were prepared with the aim to obtain a sufficiently high electrical conductivity in the surface layer suitable for electric discharge machining (EDM). The layer sequence in the asymmetric three-layered composites was SiC/SiC-5GNPs/SiC-15GNPs, while in the symmetric five-layered composite, the order of layers was SiC-15GNPs/SiC-5GNPs/SiC/SiC-5GNPs/SiC-15GNPs. The layered samples were prepared by rapid hot-pressing (RHP) applying various pressures, and it was shown that for the preparation of dense 3- or 5-layered SiC/GNPs composites, at least 30 MPa of the applied load was required during sintering. The electrical conductivity of 3-layered and 5-layered composites increased significantly with increasing sintering pressure when measured on the SiC surface layer containing 15 wt.% of GNPs. The increasing GNPs content had a positive influence on the electrical conductivity of individual layers, while their instrumented hardness and elastic modulus decreased. The scratch tests confirmed that the materials consisted of well-defined layers with straight interfaces without any delamination, which suggests good adhesion between the individual layers.


Sign in / Sign up

Export Citation Format

Share Document