scholarly journals Antiviral Textiles: A Review on their types and Significance

Author(s):  
Varsha N, Malavika B and Vyshnavi V Rao

The world is ever developing with new inventions and technology to cater the changing lifestyles of people. The COVID-19 pandemic has stressed an increased importance of health products. One such innovation is antiviral textile which are which are capable of preventing the microbes or viruses to contact the surface of textiles. Natural fibre textiles are the best medium for the growth of many microbes which leads to degradation and unpleasant odours. To prevent all these undesirable effects, textiles are impregnated with antiviral nanoparticles in the fibres or fabrics. The use of nanoparticles makes the textiles antimicrobial, anti odour, water and stain repellent. In the last few decades, natural polymers have gained much attention among scientific communities owing to their therapeutic potential. Antiviral textiles are classified into a few broad groups, such as polymeric materials, metal ions/metal oxides, and functional nanomaterials, based on the type of materials used at the virus contamination sites. This review is an overview of antiviral textiles and their types, properties, structure of polymers and nanoparticles involved and their significance.

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4041
Author(s):  
Rakesh Pemmada ◽  
Xiaoxian Zhu ◽  
Madhusmita Dash ◽  
Yubin Zhou ◽  
Seeram Ramakrishna ◽  
...  

The worldwide, extraordinary outbreak of coronavirus pandemic (i.e., COVID-19) and other emerging viral expansions have drawn particular interest to the design and development of novel antiviral, and viricidal, agents, with a broad-spectrum of antiviral activity. The current indispensable challenge lies in the development of universal virus repudiation systems that are reusable, and capable of inactivating pathogens, thus reducing risk of infection and transmission. In this review, science-based methods, mechanisms, and procedures, which are implemented in obtaining resultant antiviral coated substrates, used in the destruction of the strains of the different viruses, are reviewed. The constituent antiviral members are classified into a few broad groups, such as polymeric materials, metal ions/metal oxides, and functional nanomaterials, based on the type of materials used at the virus contamination sites. The action mode against enveloped viruses was depicted to vindicate the antiviral mechanism. We also disclose hypothesized strategies for development of a universal and reusable virus deactivation system against the emerging COVID-19. In the surge of the current, alarming scenario of SARS-CoV-2 infections, there is a great necessity for developing highly-innovative antiviral agents to work against the viruses. We hypothesize that some of the antiviral coatings discussed here could exert an inhibitive effect on COVID-19, indicated by the results that the coatings succeeded in obtaining against other enveloped viruses. Consequently, the coatings need to be tested and authenticated, to fabricate a wide range of coated antiviral products such as masks, gowns, surgical drapes, textiles, high-touch surfaces, and other personal protective equipment, aimed at extrication from the COVID-19 pandemic.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1073
Author(s):  
Dmitriy Berillo ◽  
Areej Al-Jwaid ◽  
Jonathan Caplin

Bioremediation is a key process for reclaiming polluted soil and water by the use of biological agents. A commonly used approach aims to neutralise or remove harmful pollutants from contaminated areas using live microorganisms. Generally, immobilised microorganisms rather than planktonic cells have been used in bioremediation methods. Activated carbon, inorganic minerals (clays, metal oxides, zeolites), and agricultural waste products are acceptable substrates for the immobilisation of bacteria, although there are limitations with biomass loading and the issue with leaching of bacteria during the process. Various synthetic and natural polymers with different functional groups have been used successfully for the efficient immobilisation of microorganisms and cells. Promise has been shown using macroporous materials including cryogels with entrapped bacteria or cells in applications for water treatment and biotechnology. A cryogel is a macroporous polymeric gel formed at sub-zero temperatures through a process known as cryogelation. Macroporous hydrogels have been used to make scaffolds or supports for immobilising bacterial, viral, and other cells. The production of composite materials with immobilised cells possessing suitable mechanical and chemical stability, porosity, elasticity, and biocompatibility suggests that these materials are potential candidates for a range of applications within applied microbiology, biotechnology, and research. This review evaluates applications of macroporous cryogels as tools for the bioremediation of contaminants in wastewater.


2018 ◽  
Vol 243 (8) ◽  
pp. 665-676 ◽  
Author(s):  
Agnes B Meireles ◽  
Daniella K Corrêa ◽  
João VW da Silveira ◽  
Ana LG Millás ◽  
Edison Bittencourt ◽  
...  

Electrospinning is one of the techniques to produce structured polymeric fibers in the micro or nano scale and to generate novel materials for biomedical proposes. Electrospinning versatility provides fibers that could support different surgical and rehabilitation treatments. However, its diversity in equipment assembly, polymeric materials, and functional molecules to be incorporated in fibers result in profusion of recent biomaterials that are not fully explored, even though the recognized relevance of the technique. The present article describes the main electrospun polymeric materials used in oral applications, and the main aspects and parameters of the technique. Natural and synthetic polymers, blends, and composites were identified from the available literature and recent developments. Main applications of electrospun fibers were focused on drug delivery systems, tissue regeneration, and material reinforcement or modification, although studies require further investigation in order to enable direct use in human. Current and potential usages as biomaterials for oral applications must motivate the development in the use of electrospinning as an efficient method to produce highly innovative biomaterials, over the next few years. Impact statement Nanotechnology is a challenge for many researchers that look for obtaining different materials behaviors by modifying characteristics at a very low scale. Thus, the production of nanostructured materials represents a very important field in bioengineering, in which the electrospinning technique appears as a suitable alternative. This review discusses and provides further explanation on this versatile technique to produce novel polymeric biomaterials for oral applications. The use of electrospun fibers is incipient in oral areas, mainly because of the unfamiliarity with the technique. Provided disclosure, possibilities and state of the art are aimed at supporting interested researchers to better choose proper materials, understand, and design new experiments. This work seeks to encourage many other researchers–Dentists, Biologists, Engineers, Pharmacists–to develop innovative materials from different polymers. We highlight synthetic and natural polymers as trends in treatments to motivate an advance in the worldwide discussion and exploration of this interdisciplinary field.


2019 ◽  
Author(s):  
Riga Sari ◽  
Hade Afriansyah

This article describe about curriculum. The curriculum is a set of plans and arrangements regarding the objectives, content, and learning materials and materials used as guidelines for the implementation of learning activities to achieve certain educational goals. Administration of the curriculum is a system of curriculum management that is cooperative, comprehensive, systemic, and systematic in order to realize the achievement of curriculum objectives. The aim of the curriculum is to achieve institutional learning at educational institutions, so that the curriculum plays an important role in realizing quality and quality schools. The method used in this study includes planning, implementation, supervision, and curriculum evaluation. Thus it can be seen that a good curriculum is a curriculum that follows the development of science and technology based on society. Failure in the administration of a curriculum will have fatal consequences on the success of the world of education.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4581
Author(s):  
Baljinder K. Kandola ◽  
S. Ilker Mistik ◽  
Wiwat Pornwannachai ◽  
A. Richard Horrocks

Biocomposites comprising a combination of natural fibres and bio-based polymers are good alternatives to those produced from synthetic components in terms of sustainability and environmental issues. However, it is well known that water or aqueous chemical solutions affect natural polymers/fibres more than the respective synthetic components. In this study the effects of water, salt water, acidic and alkali solutions ageing on water uptake, mechanical properties and flammability of natural fibre-reinforced polypropylene (PP) and poly(lactic acid) (PLA) composites were compared. Jute, sisal and wool fibre- reinforced PP and PLA composites were prepared using a novel, patented nonwoven technology followed by the hot press method. The prepared composites were aged in water and chemical solutions for up to 3 week periods. Water absorption, flexural properties and the thermal and flammability performances of the composites were investigated before and after ageing each process. The effect of post-ageing drying on the retention of mechanical and flammability properties has also been studied. A linear relationship between irreversible flexural modulus reduction and water adsorption/desorption was observed. The aqueous chemical solutions caused further but minor effects in terms of moisture sorption and flexural modulus changes. PLA composites were affected more than the respective PP composites, because of their hydrolytic sensitivity. From thermal analytical results, these changes in PP composites could be attributed to ageing effects on fibres, whereas in PLA composite changes related to both those of fibres present and of the polymer. Ageing however, had no adverse effect on the flammability of the composites.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 471
Author(s):  
H. A. Aisyah ◽  
M. T. Paridah ◽  
S. M. Sapuan ◽  
R. A. Ilyas ◽  
A. Khalina ◽  
...  

Over the last decade, the progressive application of natural fibres in polymer composites has had a major effect in alleviating environmental impacts. Recently, there is a growing interest in the development of green materials in a woven form by utilising natural fibres from lignocellulosic materials for many applications such as structural, non-structural composites, household utilities, automobile parts, aerospace components, flooring, and ballistic materials. Woven materials are one of the most promising materials for substituting or hybridising with synthetic polymeric materials in the production of natural fibre polymer composites (NFPCs). These woven materials are flexible, able to be tailored to the specific needs and have better mechanical properties due to their weaving structures. Seeing that the potential advantages of woven materials in the fabrication of NFPC, this paper presents a detailed review of studies related to woven materials. A variety of factors that influence the properties of the resultant woven NFRC such as yarn characteristics, fabric properties as well as manufacturing parameters were discussed. Past and current research efforts on the development of woven NFPCs from various polymer matrices including polypropylene, polylactic acid, epoxy and polyester and the properties of the resultant composites were also compiled. Last but not least, the applications, challenges, and prospects in the field also were highlighted.


2021 ◽  
Vol 22 (14) ◽  
pp. 7463
Author(s):  
Ismat Majeed ◽  
Komal Rizwan ◽  
Ambreen Ashar ◽  
Tahir Rasheed ◽  
Ryszard Amarowicz ◽  
...  

The Mimosa genus belongs to the Fabaceae family of legumes and consists of about 400 species distributed all over the world. The growth forms of plants belonging to the Mimosa genus range from herbs to trees. Several species of this genus play important roles in folk medicine. In this review, we aimed to present the current knowledge of the ethnogeographical distribution, ethnotraditional uses, nutritional values, pharmaceutical potential, and toxicity of the genus Mimosa to facilitate the exploitation of its therapeutic potential for the treatment of human ailments. The present paper consists of a systematic overview of the scientific literature relating to the genus Mimosa published between 1931 and 2020, which was achieved by consulting various databases (Science Direct, Francis and Taylor, Scopus, Google Scholar, PubMed, SciELO, Web of Science, SciFinder, Wiley, Springer, Google, The Plant Database). More than 160 research articles were included in this review regarding the Mimosa genus. Mimosa species are nutritionally very important and several species are used as feed for different varieties of chickens. Studies regarding their biological potential have shown that species of the Mimosa genus have promising pharmacological properties, including antimicrobial, antioxidant, anticancer, antidiabetic, wound-healing, hypolipidemic, anti-inflammatory, hepatoprotective, antinociceptive, antiepileptic, neuropharmacological, toxicological, antiallergic, antihyperurisemic, larvicidal, antiparasitic, molluscicidal, antimutagenic, genotoxic, teratogenic, antispasmolytic, antiviral, and antivenom activities. The findings regarding the genus Mimosa suggest that this genus could be the future of the medicinal industry for the treatment of various diseases, although in the future more research should be carried out to explore its ethnopharmacological, toxicological, and nutritional attributes.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Kieran Joyce ◽  
Georgina Targa Fabra ◽  
Yagmur Bozkurt ◽  
Abhay Pandit

AbstractBiomaterials have had an increasingly important role in recent decades, in biomedical device design and the development of tissue engineering solutions for cell delivery, drug delivery, device integration, tissue replacement, and more. There is an increasing trend in tissue engineering to use natural substrates, such as macromolecules native to plants and animals to improve the biocompatibility and biodegradability of delivered materials. At the same time, these materials have favourable mechanical properties and often considered to be biologically inert. More importantly, these macromolecules possess innate functions and properties due to their unique chemical composition and structure, which increase their bioactivity and therapeutic potential in a wide range of applications. While much focus has been on integrating these materials into these devices via a spectrum of cross-linking mechanisms, little attention is drawn to residual bioactivity that is often hampered during isolation, purification, and production processes. Herein, we discuss methods of initial material characterisation to determine innate bioactivity, means of material processing including cross-linking, decellularisation, and purification techniques and finally, a biological assessment of retained bioactivity of a final product. This review aims to address considerations for biomaterials design from natural polymers, through the optimisation and preservation of bioactive components that maximise the inherent bioactive potency of the substrate to promote tissue regeneration.


Author(s):  
Marcelo Torres Piza Paes ◽  
Antonio Marcos Rego Motta ◽  
Lauro Lemos Lontra Filho ◽  
Juliano Ose´ias de Morais ◽  
Sine´sio Domingues Franco

Scratching abrasion due to rubbing against the sediment layer is an important degradation mechanism of flexible cable in deep water oil and natural gas exploitation. The present study was initiated to gain relevant data on the wear behaviour of some commercial materials used to externally protect these cables. So, Comparison tests were carried out using the single-point scratching technique, which consists of a sharp point mounted at the extremity of a pendulum. The energy dissipated during the scratching is used to evaluate the relative scratch resistance. The results showed, that the contact geometry strongly affects the specific scratching energy. Using SEM imaging, it was found, that these changes were related to the operating wear mechanisms. The observed wear mechanisms are also compared with those observed on some cables in deep water operations.


2021 ◽  
Vol 11 (6) ◽  
pp. 2849
Author(s):  
Lilla Pawlik-Sobecka ◽  
Joanna Górka-Dynysiewicz ◽  
Jadwiga Kuciel-Lewandowska

Despite its enormous therapeutic potential, spa treatment is not always properly perceived, hence the numerous attempts to assess its effectiveness. In the world literature, there are few reports on therapy using sulphur- and radon-containing therapeutic waters. In countries with a long tradition of balneotherapy, activity in this field of medicine is evident. Undoubtedly, the interest in balneotherapy results also from natural resources used in spa medicine, which, as geological and balneochemical research shows, are enormous in Poland. A particular example of the occurrence of radon–sulphide waters, rare on the European scale, is the Przerzeczyn-Zdrój health resort. The mechanism of action of therapeutic waters is not fully explored, but their effectiveness in therapy is confirmed by many authors. It is believed to be an effect of combined action of many factors, the most important of which are thermal, mechanical, and chemical.


Sign in / Sign up

Export Citation Format

Share Document