EFECTO DE DIFERENTES MATERIALES VEGETALES DE TITHONIA DIVERSIFOLIA (HEMSL.) GRAY EN LA POBLACIÓN DE METANÓGENOS Y PROTOZOOS DEL RUMEN

Author(s):  
Juana Luz Galindo Blanco ◽  
Oreste La O León ◽  
Tomas Ruiz Vázquez ◽  
Alfredo González Vásquez ◽  
Washington Narvaez Campana

Tithonia diversifolia es una planta con alto potencial para la alimentación  animal. El objetivo del presente trabajo fue evaluar el efecto de diferentes materiales vegetales (mv) en la población de metanógenos y protozoos del rumen,  se empleó la técnica in vitro de producción de gases. Los tratamientos consistieron en los siguientes materiales vegetales de T. diversifolia: mv-3, mv-5, mv- 6, mv-10, mv- 13, mv-17, mv-23, mv-24 y mv-25. Éstos se compararon con un tratamiento control de pasto estrella (Cynodon nlemfuensis). Los muestreos se realizaron a las 3 horas posteriores a la incubación y se replicó 4 veces.  El diseño experimental fue completamente aleatorizado. Los valores de proteína cruda (PC)  oscilaron desde18, 26 en el mv- 3 hasta 26,40 para el caso del mv- 26. Las poblaciones de metanógenos fueron 27,7; 23,5; 21,3; 16,2; 20,0; 19,4; 12,4; 22,5 y 20,2. 1010 UFC/mL para pasto estrella y los mv de T. diversifolia 3, 5, 6, 10, 13, 17, 23, 24 y 25, respectivamente. Las poblaciones de protozoos en el tratamiento control fueron de 48. 105células/mLy 14; 11; 10; 7; 10; 9; 4; 10 y 9, para los mv -3, mv-5, mv-6, mv-10, mv-13, mv-17, mv-23, mv-24 y mv-25, respectivamente. Se destacan como los más promisorios para reducir los metanógenos y protozoos del rumen, los mv- 23 y mv -10. Se concluye que los materiales vegetales de T. diversifolia ejercen efecto depresivo en las poblaciones de metanógenos y protozoos y se  destacan los mv -23 y mv-10 como los más promisorios para estos propósitosPalabras clave: rumen, metanogénesis, titonia ABSTRACTTithonia diversifolia is a plant with high potential for animal feed. The objective of the present work was to evaluate the effect of different plant materials (vm) in the population of methanogens and rumen protozoa, the in vitro technique of gas production was used. The treatments consisted of the following plant materials of T. diversifolia: mv-3, mv-5, mv-6, mv-10, mv-13, mv-17, mv-23, mv-24 and mv-25. These were compared with a control treatment of star grass (Cynodon nlemfuensis). Samples were taken at 3 hours after incubation and replicated 4 times. The experimental design was completely randomized. Crude protein (CP) values ranged from 18.26 in mv-3 to 26.40 in the case of mv-26. The methanogen populations were 27.7; 23.5; 21.3; 16.2; 20.0; 19.4; 12.4; 22.5 and 20.2. 1010 CFU / mL for star grass and the mv of T. diversifolia 3, 5, 6, 10, 13, 17, 23, 24 and 25, respectively. The protozoa populations in the control treatment were 48. 105 cells / mL and 14; 11; 10; 7; 10; 9; 4; 10 and 9, for mv -3, mv-5, mv-6, mv-10, mv-13, mv-17, mv-23, mv-24 and mv-25, respectively. They stand out as the most promising to reduce the methanogens and protozoa of the rumen, the mv-23 and mv -10. It is concluded that the plant materials of T. diversifolia exert a depressive effect on the populations of methanogens and protozoa and the mv -23 and mv-10 stand out as the most promising for these purposes.Keywords: rumen, methanogenesis, titonia

Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Kim Margarette C. Nogoy ◽  
Jia Yu ◽  
Young Gyu Song ◽  
Shida Li ◽  
Jong-Wook Chung ◽  
...  

The amaranth plants showed high potential feed value as forage for ruminants. An in-depth study of this plant, particularly in cattle, will help extend its utilization as an alternative protein and fiber feed source in cattle feeding. In this study, the nutrient compositions of three different species of amaranth, Amaranthus caudatus L., Amaranthus cruentus L., and Amaranthus hypochondriacus L.—two varieties for each species, A.ca 74, A.ca 91, A.cu 62, A.cu 66, A. hy 30, and A. hy 48—were evaluated. The in vitro technique was used to evaluate the fermentation characteristics such as total gas production, total volatile fatty acids (VFA) concentration, pH, and ammonia concentration of the rumen fluid. Moreover, the effective degradabilities of dry matter (EDDM) and crude protein (EDCP) of the amaranth forages were determined through in situ bag technique. The amaranth forages: A. caudatus, A. cruentus, and A. hypochondriacus showed better nutritive value than the locally produced forages in Chungcheong province of Korea. The CP of the amaranth ranged from 11.95% to 14.19%, and the neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents ranged from 45.53% to 70.88% and 34.17% to 49.83%, respectively. Among the amaranth varieties, A. hypochondriacus 48 showed the most excellent ruminant feed nutrient quality (CP, 14.19%; NDF, 45.53%; and ADF, 34.17%). The effective degradabilities of dry matter (EDDM; 33–56%) and crude protein EDCP (27–59%) of the amaranth were lower compared to other studies, which could be due to the maturity stage at which the forages were harvested. Nonetheless, A. hypochondriacus 48 showed the highest EDDM (56.73%) and EDCP (59.09%). The different amaranth species did not differ greatly in terms of total VFA concentration or molar proportions, total gas production, or ammonia-N concentration. The high nutrient composition, and highly effective degradability of dry matter and crude protein, coupled with the favorable fermentation characteristics, suggest that the amaranth forages showed good to excellent feed quality for cattle.


2008 ◽  
Vol 14 (4) ◽  
pp. 311 ◽  
Author(s):  
K. PARTANEN ◽  
T. JALAVA

An in vitro gas production technique was used to screen different organic acids (formic, propionic, lactic, citric, and fumaric acid), organic salts (calcium formate, potassium sorbate, and sodium benzoate), and inorganic phosphoric acid for their ability to modulate microbial fermentation in the digestive tract of piglets. For the incubation, 40 ml of culture medium (53% buffer, 45% frozen ileal digesta, and 2% fresh faeces) was dispensed in vessels containing 5 ml of buffer, 0.5 g of feed, and 20 ìl of liquid or 20 mg of solid acidifiers. Gas production was measured every 15 min during the 24 h incubation at 39°C, and a Gompertz bacterial growth model was applied to the gas production data. Formic acid was the only acid that reduced the maximum rate of gas production (ìm) compared to that in the control treatment (P < 0.05). The ìm was slower in vessels with formic acid than in those with calcium formate, citric acid, and potassium sorbate (P < 0.05) Calcium formate increased the ìm compared to the control treatment (P < 0.05). The maximum volume of gas produced and the lag time did not differ between different acidifiers (P > 0.05). When investigating formic-acid-based mixtures that contained 1–5% of potassium sorbate and/or sodium benzoate, the estimated parameters for the Gompertz growth model did not differ from those for treatments with plain formic acid (P > 0.05). However, concentrations of total volatile fatty acids, acetic acid, propionic acid, and n-butyric acid were reduced by all the mixtures (P < 0.05), but not by plain formic acid (P > 0.05). In conclusion, organic acids and salts were found to differ in their ability to modulate microbial fermentation in the digestive tract of piglets. Mixing formic acid with potassium sorbate or sodium benzoate changed fermentation patterns, and the possibility to use them to enhance the antimicrobial effect of formic acid should be investigated further in vivo.;


2020 ◽  
Vol 44 (3) ◽  
Author(s):  
Cuk Tri Noviandi ◽  
Dibya Ratnopama ◽  
Ali Agus ◽  
Ristianto Utomo

This study was done to determine the effects of bale sizes of bio-ammoniated rice straw on its nutrient quality and in vitro digestibility. Rice straw were bio-ammoniated by adding 2 g urea and 1 g probiotic/kg DM. By following a completely randomized design, rice straw was baled in 3 different weights (15, 25, and 35 kg) with six replications for each treatment, and then stored for 3 weeks. In the end of the week 3, bales were opened, aired, and then sampled for proximate analysis (dry matter, organic matter, crude protein, and crude fiber) and digestibility by in vitro gas production method. Using analysis of variance method, the proximate data showed that greater the bales size (15, 25, and 35 kg) increased crude protein (7.59, 7.86, and 9.95%, respectively; P<0.05) and decreased crude fiber contents (24.1, 22.1, and 18.8%, respectively; P<0.05). By increasing the size of bales also increased a, b, and c fractions (-0.79, 0.26, and 0.82 mL/100 mg DM; 20.2, 18.2, and 17.6 mL/100 mg DM; 0.012, 0.014, and 0.019 mL/h, respectively; P<0.05) as well as gas production (11.4, 11.5, and 13.8 mL/100 mg DM, respectively; P<0.05). It can be concluded that packing bio-ammoniated rice straw in 35 kg bale is the most effective way in increasing nutrient quality and digestibility of rice straw.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 166
Author(s):  
Pichad Khejornsart ◽  
Anusorn Cherdthong ◽  
Metha Wanapat

Alternative feed sources can be utilized to reduce enteric methane (CH4) emissions, a major greenhouse gas that contributes to global warming. This study aimed to evaluate the potential use of tropical plants to improve digestibility, reduce protozoal populations, improve rumen fermentation, and minimize methane emissions from ruminants. The plants considered herein grow in tropical climates, are easily accessible in large quantities, and are directly related to human food production. Nine plants that grow naturally in tropical climates were assessed. Plant supplementation substantially enhanced accumulative gas production at 24 h (p < 0.05). The apparent organic matter digestibility (AOMDvt) of the diet was not affected by five of the nine plants. With the addition of the plant material, ammonia nitrogen concentrations were reduced by up to 47% and methane concentrations were reduced by 54%. Five of the nine plant materials reduced methane production in terms of CH4/dry matter and CH4/digestibility of the organic matter by 15–35% and 8–24%, respectively. In conclusion, supplementation with plants with high tannin contents was shown to be a viable strategy for improving rumen fermentation, reducing protozoal populations, and limiting methane emissions. In this regard, the leaves of Piper sarmentosum, Acmella oleracea, Careya arborea, and Anacardium occidentale were especially promising.


2019 ◽  
Vol 59 (4) ◽  
pp. 709 ◽  
Author(s):  
F. Garcia ◽  
P. E. Vercoe ◽  
M. J. Martínez ◽  
Z. Durmic ◽  
M. A. Brunetti ◽  
...  

The aim of the present study was to evaluate the impact of essential oils (EO) from Lippia turbinata (LT) and Tagetes minuta (TM) as well as the rotation of both EO on fermentation parameters in vitro. Daily addition of LT, TM, or a 3-day rotation between them (TM/LT), as well as a control (without EO), was evaluated using the rumen simulation technique (Rusitec). The experiment lasted 19 days, with a 7-day adaptation period, followed by 12 days of treatment (Days 0–12). The EO were dissolved in ethanol (70% vol/vol) to be added daily to fermenters (300 μL/L) from Day 0. Daily measurements included methane concentration, total gas production, apparent DM disappearance and pH, which started 2 days before the addition of treatments. On Days 0, 4, 8 and 12 apparent crude protein disappearance and neutral detergent fibre disappearance, ammonia and volatile fatty acid concentration and composition were determined. Methane production was significantly inhibited shortly after addition of both EO added individually, and persisted over time with no apparent adaptation to EO addition. The TM/LT treatment showed a similar effect on methane production, suggesting that rotating the EO did not bring further improvements in reduction or persistency compared with the inclusion of the EO individually. Gas production, total volatile fatty acid concentration and composition and apparent crude protein disappearance were not affected by EO addition. Compared with the control, a 5% reduction of apparent DM disappearance and a 15% reduction of neutral detergent fibre disappearance were observed with the addition of EO. Only TM and TM/LT reduced ammonia concentration. Given the significant and persistent antimethanogenic activity of both EO, and the potential of T. minuta to modify nitrogen metabolism, EO from these plant species are of interest for developing new feed additives with potential application in ruminant nutrition that are also likely to be acceptable to consumers.


2021 ◽  
Vol 44 (3) ◽  
pp. 371-377
Author(s):  
O. O. Falola ◽  
O. O. Olufayo

The inclusion of multipurpose trees with grass such as Panicum maximum in the diet of ruminants may enhance productivity. Thus, the study was carried out to determine the proximate composition, in vitro gas production characteristics and parameters of Leucaena leucocephala and Panicum maximum at varying proportions. Five diets were formulated such that Panicum maximum was substituted with Leucaena leucocephala at different ratio: T1 (100% Panicum maximum), T2 (100% Leuceana leucocephala), T3 (50% P. maximum + 50% L. leucocephala), T4 (75% P. maximum + 25% L .leucocephala) and T5 (25% P. maximum + 75% L. leucocephala). Data were subjected to analysis of variance. Values obtained for dry matter (34.43 –35.95g/100g) decreased with the increased inclusion of Leuceana leucocephala in the diets. The crude fiber values (14.33 – 30.75g/100g) also followed the same trend while crude protein (CP) content (10.70 – 26.78g/100g) increased the inclusion of Leucaena leucocephala in the diets. There were significant (P < 0.05) differences in the treatment means of organic matter digestibility (OMD 31.93 – 37.07%), Metabolisable energy (ME 3.62 – 4.33 MJ/kgDM), short chain fatty acids (SCFA 0.04 – 0.16mL) and methane (ME 1.00 – 2.50 mL).The values (2.00 – 4.67 ml/200mgDM) obtained for immediate soluble 'a' was significantly (P < 0.05) different among the treatments. The extent of gas production (a+b) ranged from 2.00 – 4.67 mL/200mgDM, T1 (100% Panicum maximum) recorded the lowest while highest was observed in T2 (100% Leucaena leucocephala). The insoluble but degradable fraction 'b'ranged from 2.67 – 5.67ml/200mgDM, while the rate of gas production 'c' ranged from 0.04 – 0.14ml/hr. In conclusion, the enhanced values of crude protein, OMD, SCFA, and ME in the Panicum maximum and Leucaena leucocephala mixture indicate that the diets is able to meet the nutrients requirements of small ruminants in the tropics especially during the dry season.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1784
Author(s):  
Beatriz Ligoski ◽  
Lucas Ferreira Gonçalves ◽  
Flavio Lopes Claudio ◽  
Estenio Moreira Alves ◽  
Ana Maria Krüger ◽  
...  

Legume–grass intercropping systems are a sustainable option to improve nutritional quality of animal feed and decrease livestock greenhouse gas emissions. Thus, the present study evaluated yield, chemical composition and in vitro gas production of silages produced with intercropped palisade grass (Urochloa brizantha.(A.Rich.) R.D.Webster), pigeon pea (Cajanus cajan cv. Super N) and corn (Zea mays. L.). Forage was harvested and placed inside micro-silos, which were opened after 100 days and samples were collected for chemical composition and in vitro gas production analyses. Intercropped silage had higher crude protein, acid detergent fiber, and lignin content than corn silage. Moreover, intercropped silage decreased total gas and methane production. Therefore, intercropped silage showed potential to increase conserved feed nutritional quality and reduce methane emissions in livestock production systems.


2005 ◽  
Vol 2005 ◽  
pp. 218-218
Author(s):  
E.F. Nozella ◽  
S.L.S. Cabral Filho ◽  
I.C.S. Bueno ◽  
P.B. Godoy ◽  
C. Longo ◽  
...  

Brazil has arid regions where livestock production is limited by forage source. However, some native herbaceous browses have a dry tolerance and had been used as animal feed. Some of those plants have anti nutritional compounds such as tannins that can interfere on intake and digestibility. Tannins have a high affinity to proteins and could make these molecules unavailable for animal. Compounds as polyethylene glycol (PEG) has been used on tannin studies, because it has more affinity with tannins than proteins. Based on that, it is possible to evaluate the nutritive potential of tanniniferous plants, using PEG in gas based techniques for assessing anti nutritional factors in tanniniferous plants for ruminants. The aim of this work was to investigate the effects of different treatments (oven-, shade- and sun-drying and treatment with urea) on phenolics compounds and on the biological activity of tannins using the in vitro gas method with the addition of polyethylene glycol (PEG).


2018 ◽  
Vol 28 (3) ◽  
pp. 213
Author(s):  
Eko Marhaeniyanto ◽  
Sri Susanti

The aim of this research was to study the in vitro ruminal fermentability of supplementation of <em>Gliricidia sepium, Moringa oleifera</em>, Lamk (<em>MOL</em>), <em>Ceiba pentandra</em> and <em>Paraserianthes falcataria </em>leaf meal in concentrate feed to be tested on sheep.<strong> </strong>This research with the experimental methods was arranged in Randomized Block Design (RBD) with 6 treatments and 3 groups. The treatment feed tested consisted of concentrate without leaves and concentrate with leaf meal supplementation. Crude protein content (CP) concentrates were prepared 16%, 18% and 20%. Supplementation uses a mixture of <em>Gliricidia sepium, MOL</em>, <em>Ceiba pentandra</em> and <em>Paraserianthes falcataria </em>leaf meal in concentrate feed (1: 1: 1: 1) as much as 10%, 20% and 30%. The measured variables were  degradation of dry matter (DDM) and degradation of organic matter (DOM), gas production rate, microbial biomass and NH<sub>3</sub> concentration. The use of mixed leaf meal in concentrate feed resulted in in vitro DDM as well as concentrate feed without leaf meal supplementation. Supplementation of leaf meal in concentrate feed as much as 30% with CP 20% resulted in a decrease in the value of fermentability. The supplementation of leaf meal in concentrate feed as much as 20% in concentrate feed with CP 18% produced the best fermentability value. Suggested for in-vivo trials on sheep using 18% protein concentrate feed by utilizing <em>Gliricidia sepium, MOL</em>, <em>Ceiba pentandra</em> and <em>Paraserianthes falcataria </em>leaf meal in concentrate feed as cheap protein sources.


Sign in / Sign up

Export Citation Format

Share Document