Hydrogen diffusion in olivine: challenges and opportunities

Author(s):  
Michael Jollands

<p>Understanding rates and mechanisms of diffusion in geologically relevant materials is important when considering, for example, electrical conductivity, rheology and, of course, diffusion chronometry. Olivine has received much attention in this regard – not only is it important in upper mantle and many volcanic settings, but its wide range of stability in pressure-temperature-chemical activity space makes it extremely amenable to experimental petrology. Furthermore, olivine is simple enough to study systematically, but contains different crystallographic sites, diffusion pathways and is anisotropic, thus has sufficient complexity to remain interesting. Like many common rock-forming minerals, olivine is nominally anhydrous, but normally contains trace amounts of hydrogen. This is generally bonded to structural oxygen, forming hydroxyl groups. These can be easily imaged by infrared spectroscopy, which simultaneously elucidates both their concentration and associated point defect chemistry.</p><p>The combination of a mineral that is quite straightforward to study experimentally, and the ability to distinguish between different H substitution mechanisms, a major strength of infrared spectroscopy, has proved to be hugely useful. However, the more we know, the more complex the system seems to become. For example, firstly, small changes in the major element composition of olivine were shown to have considerable effects on H diffusion. Secondly, close inspection of infrared spectra from experiments and natural samples revealed the presence of point defects that, according to the generally invoked theory, should not be there. Thirdly, small variations in experimental design between different studies apparently led to major discrepancies in results, even if the experiments were designed to measure ostensibly the same process. Fourthly, apparent diffusivities extracted from well-constrained natural samples showed results in complete disagreement with experiments in the same system.</p><p>On the one hand, these complexities have the potential to severely limit the accuracy of diffusion chronometry using H diffusion. On the other hand, complexity is opportunity. Given the wealth of published studies, both experimental and natural, and given that H-bearing point defects in olivine can be easily distinguished, we are presented with a unique possibility to truly unravel the diffusive behaviour of H in olivine. Recently developed theories suggest that treating H mobility as diffusion alone is insufficient (even if multiple diffusion mechanisms are invoked), and instead it is necessary to consider the way in which different H-bearing point defects interact within the crystal. A model describing this process in both pure and trace element-doped forsterite will be presented, which reconciles, to some extent, these previous discrepancies. The model suggests that the true mobility of H is one to two orders of magnitude higher than that which has been directly measured when assuming simple diffusion. Work is in progress to expand the model towards crystals with chemistries relevant for nature. If a similar model can be invoked for natural olivine, then this will require that models of processes invoking H diffusion (e.g. rheology, diffusion chronometry, electrical conductivity) will need to be reevaluated.</p>

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 629
Author(s):  
Aniello Costantini ◽  
Valeria Califano

Lipases are ubiquitous enzymes whose physiological role is the hydrolysis of triacylglycerol into fatty acids. They are the most studied and industrially interesting enzymes, thanks to their versatility to promote a plethora of reactions on a wide range of substrates. In fact, depending on the reaction conditions, they can also catalyze synthesis reactions, such as esterification, acidolysis and transesterification. The latter is particularly important for biodiesel production. Biodiesel can be produced from animal fats or vegetable oils and is considered as a biodegradable, non-toxic and renewable energy source. The use of lipases as industrial catalysts is subordinated to their immobilization on insoluble supports, to allow multiple uses and use in continuous processes, but also to stabilize the enzyme, intrinsically prone to denaturation with consequent loss of activity. Among the materials that can be used for lipase immobilization, mesoporous silica nanoparticles represent a good choice due to the combination of thermal and mechanical stability with controlled textural characteristics. Moreover, the presence of abundant surface hydroxyl groups allows for easy chemical surface functionalization. This latter aspect has the main importance since lipases have a high affinity with hydrophobic supports. The objective of this work is to provide an overview of the recent progress of lipase immobilization in mesoporous silica nanoparticles with a focus on biodiesel production.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2197
Author(s):  
Chia-Chi Yang ◽  
Po-Ching Yang ◽  
Jia-Jin J. Chen ◽  
Yi-Horng Lai ◽  
Chia-Han Hu ◽  
...  

Since there is merit in noninvasive monitoring of muscular oxidative metabolism for near-infrared spectroscopy in a wide range of clinical scenarios, the present study attempted to evaluate the clinical usability for featuring the modulatory strategies of sternocleidomastoid muscular oxygenation using near-infrared spectroscopy in mild nonspecific neck pain patients. The muscular oxygenation variables of the dominant or affected sternocleidomastoid muscles of interest were extracted at 25% of the maximum voluntary isometric contraction from ten patients (5 males and 5 females, 23.6 ± 4.2 years) and asymptomatic individuals (6 males and 4 females, 24.0 ± 5.1 years) using near-infrared spectroscopy. Only a shorter half-deoxygenation time of oxygen saturation during a sternocleidomastoid isometric contraction was noted in patients compared to asymptomatic individuals (10.43 ± 1.79 s vs. 13.82 ± 1.42 s, p < 0.001). Even though the lack of statically significant differences in most of the muscular oxygenation variables failed to refine the definite pathogenic mechanisms underlying nonspecific neck pain, the findings of modulatory strategies of faster deoxygenation implied that near-infrared spectroscopy appears to have practical potential to provide relevant physiological information regarding muscular oxidative metabolism and constituted convincing preliminary evidences of the adaptive manipulations rather than pathological responses of oxidative metabolism capacity of sternocleidomastoid muscles in nonspecific neck patients with mild disability.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jonathan H. Gosling ◽  
Oleg Makarovsky ◽  
Feiran Wang ◽  
Nathan D. Cottam ◽  
Mark T. Greenaway ◽  
...  

AbstractPristine graphene and graphene-based heterostructures can exhibit exceptionally high electron mobility if their surface contains few electron-scattering impurities. Mobility directly influences electrical conductivity and its dependence on the carrier density. But linking these key transport parameters remains a challenging task for both theorists and experimentalists. Here, we report numerical and analytical models of carrier transport in graphene, which reveal a universal connection between graphene’s carrier mobility and the variation of its electrical conductivity with carrier density. Our model of graphene conductivity is based on a convolution of carrier density and its uncertainty, which is verified by numerical solution of the Boltzmann transport equation including the effects of charged impurity scattering and optical phonons on the carrier mobility. This model reproduces, explains, and unifies experimental mobility and conductivity data from a wide range of samples and provides a way to predict a priori all key transport parameters of graphene devices. Our results open a route for controlling the transport properties of graphene by doping and for engineering the properties of 2D materials and heterostructures.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Caroline O’Keeffe ◽  
Laura Rhian Pickard ◽  
Juan Cao ◽  
Giuliano Allegri ◽  
Ivana K. Partridge ◽  
...  

AbstractConventional carbon fibre laminates are known to be moderately electrically conductive in-plane, but have a poor through-thickness conductivity. This poses a problem for functionality aspects that are of increasing importance to industry, such as sensing, current collection, inductive/resistive heating, electromagnetic interference (EMI) shielding, etc. This restriction is of course more pronounced for non-conductive composite reinforcements such as glass, organic or natural fibres. Among various solutions to boost through-thickness electrical conductivity, tufting with hybrid micro-braided metal-carbon fibre yarns is one of the most promising. As a well-characterised method of through thickness reinforcement, tufting is easily implementable in a manufacturing environment. The hybridisation of materials in the braid promotes the resilience and integrity of yarns, while integrating metal wires opens up a wide range of multifunctional applications. Many configurations can be produced by varying braid patterns and the constituting yarns/wires. A predictive design tool is therefore necessary to select the right material configuration for the desired functional and structural performance. This paper suggests a fast and robust method for generating finite-element models of the braids, validates the prediction of micro-architecture and electrical conductivity, and demonstrates successful manufacturing of composites enhanced with braided tufts.


2021 ◽  
pp. 152808372110592
Author(s):  
Vahid Shakeri Siavashani ◽  
Gursoy Nevin ◽  
Majid Montazer ◽  
Pelin Altay

Flexible sensors and wearable electronics have become important in recent years. A good conductive and flexible textile is needed to develop a commercial wearable device. Conductive polymers have generally been used with limitation in reducing the surface resistance to a certain amount. In this research, a method for fabricating a stretchable highly conductive cotton/lycra knitted fabric is introduced by treating the fabric with polypyrrole (PPy), silver nanoparticles (SNPs) composites, and post-treating with poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate) (PEDOT:PSS). Polypyrrole and SNPs were in situ fabricated on the cotton/lycra fabric by consecutive redox reaction of silver nitrate and pyrrole and finally covered by PEDOT:PSS solution through dip-coating. The coated textile was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray mapping, and energy dispersive X-ray spectroscopy (EDX). Fourier transform infrared spectroscopy confirmed PPy-SNPs (P-S) composites on the fabric surface. Fourier transform infrared spectroscopy results, X-ray mapping, EDAX, and XRD analysis also confirmed the P-S composites and PEDOT:PSS polymeric layer on the fabric. Morphological observation showed a layer of PEDOT:PSS on the P-S caused the higher connection of coating on textiles which resulted in the higher electrical conductivity (43 s/m). Also morphological observations showed penetration of the silver particles inside fibers which represented improving in attachment and stability of the coating on the fibers. Further, the electrical conductivity of PPy-SNPs-PEDOT:PSS coated textile increased under the tension. Hence, the stretchable and highly conductive knitted cotton/lycra fabric has potentiality to be used for fabricating the flexible sensors or wearable electronics.


2001 ◽  
Vol 1 ◽  
pp. 767-776 ◽  
Author(s):  
E.D. Lund ◽  
M.C. Wolcott ◽  
G.P. Hanson

Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N) loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower’s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS)-referenced mapping of bulk soil electrical conductivity (EC) has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.


1982 ◽  
Vol 60 (2) ◽  
pp. 201-204 ◽  
Author(s):  
S. Kupca ◽  
D. P. Kerr ◽  
B. G. Hogg ◽  
Z. S. Basinski

Positron lifetimes have been measured in an isochronal annealing study of dynamically fatigued, high purity Cu single crystals. Decomposition of the lifetime spectra into two components results in a description of the annealing process in terms of the lifetime and fraction of trapped positrons. Positron lifetimes were also determined at a series of low temperatures (10–300 K) at different stages of annealing. The lifetime of positrons trapped at point defects is found to vary with temperature indicating that a description of the trapping process according to a simple diffusion limited model is not applicable.


1962 ◽  
Vol 84 (2) ◽  
pp. 177-184 ◽  
Author(s):  
M. J. Brunner

The presence of a partially ionized gas around a hypersonic vehicle permits the application of magnetohydrodynamic (MHD) devices during re-entry. The operation of such MHD devices on a re-entry vehicle will largely depend on the magnitude of the electrical conductivity of the gas between the electrodes. In some cases it may be necessary to seed the air in order to insure high conductivity. The operation of the re-entry vehicle at relatively low gas densities and high magnetic fields will produce Hall and ion slip effects which may materially reduce the effective conductivity between the electrodes. The electrical conductivity including Hall and ion slip effects for air is presented for a wide range of pressures and temperatures and for a typical re-entry vehicle, with and without seeding. The electrical conductivity is evaluated for equilibrium conditions considering the number density and collision cross sections for electrons, neutrals, and ions. The Hall and ion slip effects are evaluated from the degree of ionization, the cyclotron frequency, and the time between collisions for electrons, neutrals, and ions.


2021 ◽  
Vol 10 ◽  
pp. 37-46
Author(s):  
G. S. Burkhanov ◽  
◽  
S. A. Lachenkov ◽  
M. A. Kononov ◽  
A. U. Bashlakov ◽  
...  

Changes in the electrical conductivity of a wide range of materials with different crystal-chemical types and electrophysical properties (quartz, glass, molybdenum disulfide, graphite, gold) under continuous proton injection are studied. Film samples of layered MoS2 and graphite compounds were obtained on rough surfaces of glass or quartz by mechanical rubbing of powder. Gold films are formed on glass substrates by magnetron sputtering of a gold target. To create a continuous stream of protons injected into the test sample, a stationary ion source with a cold cathode and a magnetic field forming an ion beam of relatively low intensity was used. The current in the ion beam is up to 1.2 mA, the pressure of hydrogen in the chamber is ~10 – 2 Pa, the energy of hydrogen ions is from 1 to 4 keV. The experimental results indicate that under conditions of continuous proton injection, the electrical conductivity of thin films with a layered structure (MoS2 and graphite) increases sharply (by 4 – 5 orders of magnitude). This effect increases when the temperature decreases from ~ 293 to ~ 77 K, as well as when the number of charges supplied to the sample increases. In the case of continuous injection of protons into massive dielectrics (glass, quartz) and thin films of gold, no noticeable change in electrical conductivity was detected.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 1063-1075
Author(s):  
Abiodun A. Amusa ◽  
Abdul L. Ahmad ◽  
Jimoh K. Adewole

Lignocellulosic biomass was delignified by combining physical and chemical pretreatment techniques. Then, a polysulfone-polyethylene glycol blend, which was compatible with the lignin-free biomass (0 wt% to 3.0 wt%), was used to fabricate composite membranes. The presence of hydroxyl groups after the pretreatment was evaluated via Fourier transform infrared spectroscopy. The rheology of the polymer solutions was assessed via the viscometric method. Also, the hydrophobicity of the fabricated membranes was determined using contact angle and porosity measurements. The fabricated membranes with near superhydrophobic properties (a contact angle of approximately 140°) based on this study revealed that contactor systems and biomedical applications would benefit from this modification.


Sign in / Sign up

Export Citation Format

Share Document