scholarly journals IMMUNE AGING AND SERIOUS CLINICAL IMPLICATIONS IN THE ELDERLY IN COVID-19

Author(s):  
Eduardo Lopes Barbosa ◽  
Estéphany Miranda Dias ◽  
Letícia Lorem Vilhena de Castro ◽  
Maysa de Vasconcelos Brito

COVID-19, caused by SARS-CoV-2 infection, is mild to moderate in most healthy precedents, but can cause life-threatening illnesses or persistent debilitating symptoms in some cases. The severity of COVID-19 is related to age, with an obligation over 65 years of age, greater risk of needing intensive care. This is a descriptive, exploratory, integrative literature review, with the aim of explaining the current knowledge about the interference of the immunosenescence process in more severe conditions caused by covid-19 in the elderly. Aging is a systemic involution, including the immune system, affecting the individual with several comorbidities, including cardiac, pulmonary and neurological comorbidities that aggravate the situation of vulnerability. Aging is triggered by several mechanisms, among the most relevant are telomere reduction and oxidative stress, which in turn lead to other scenarios such as T-cell senescence, mitochondrial dysfunction and low-grade chronic inflammation, which are added to the mechanism of action of the virus that causes COVID-19, as its key-lock factor involving ACE-2, which has a change in expression during aging, portraying the interferences of this scenario, if not in contact with the major covid-19, which contributes to seriousness in the elderly .

Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 802
Author(s):  
Teresa Vezza ◽  
Aranzazu M. de Marañón ◽  
Francisco Canet ◽  
Pedro Díaz-Pozo ◽  
Miguel Marti ◽  
...  

Type 2 diabetes is a chronic disease widespread throughout the world, with significant human, social, and economic costs. Its multifactorial etiology leads to persistent hyperglycemia, impaired carbohydrate and fat metabolism, chronic inflammation, and defects in insulin secretion or insulin action, or both. Emerging evidence reveals that oxidative stress has a critical role in the development of type 2 diabetes. Overproduction of reactive oxygen species can promote an imbalance between the production and neutralization of antioxidant defence systems, thus favoring lipid accumulation, cellular stress, and the activation of cytosolic signaling pathways, and inducing β-cell dysfunction, insulin resistance, and tissue inflammation. Over the last few years, microRNAs (miRNAs) have attracted growing attention as important mediators of diverse aspects of oxidative stress. These small endogenous non-coding RNAs of 19–24 nucleotides act as negative regulators of gene expression, including the modulation of redox signaling pathways. The present review aims to provide an overview of the current knowledge concerning the molecular crosstalk that takes place between oxidative stress and microRNAs in the physiopathology of type 2 diabetes, with a special emphasis on its potential as a therapeutic target.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 629
Author(s):  
Jorge Gutiérrez-Cuevas ◽  
Ana Sandoval-Rodriguez ◽  
Alejandra Meza-Rios ◽  
Hugo Christian Monroy-Ramírez ◽  
Marina Galicia-Moreno ◽  
...  

Obesity is defined as excessive body fat accumulation, and worldwide obesity has nearly tripled since 1975. Excess of free fatty acids (FFAs) and triglycerides in obese individuals promote ectopic lipid accumulation in the liver, skeletal muscle tissue, and heart, among others, inducing insulin resistance, hypertension, metabolic syndrome, type 2 diabetes (T2D), atherosclerosis, and cardiovascular disease (CVD). These diseases are promoted by visceral white adipocyte tissue (WAT) dysfunction through an increase in pro-inflammatory adipokines, oxidative stress, activation of the renin-angiotensin-aldosterone system (RAAS), and adverse changes in the gut microbiome. In the heart, obesity and T2D induce changes in substrate utilization, tissue metabolism, oxidative stress, and inflammation, leading to myocardial fibrosis and ultimately cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of carbohydrate and lipid metabolism, also improve insulin sensitivity, triglyceride levels, inflammation, and oxidative stress. The purpose of this review is to provide an update on the molecular mechanisms involved in obesity-linked CVD pathophysiology, considering pro-inflammatory cytokines, adipokines, and hormones, as well as the role of oxidative stress, inflammation, and PPARs. In addition, cell lines and animal models, biomarkers, gut microbiota dysbiosis, epigenetic modifications, and current therapeutic treatments in CVD associated with obesity are outlined in this paper.


2018 ◽  
Vol 314 (4) ◽  
pp. L642-L653 ◽  
Author(s):  
Louise Hecker

The rapid expansion of the elderly population has led to the recent epidemic of age-related diseases, including increased incidence and mortality of chronic and acute lung diseases. Numerous studies have implicated aging and oxidative stress in the pathogenesis of various pulmonary diseases; however, despite recent advances in these fields, the specific contributions of aging and oxidative stress remain elusive. This review will discuss the consequences of aging on lung morphology and physiology, and how redox imbalance with aging contributes to lung disease susceptibility. Here, we focus on three lung diseases for which aging is a significant risk factor: acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Preclinical and clinical development for redox- and senescence-altering therapeutic strategies are discussed, as well as scientific advancements that may direct current and future therapeutic development. A deeper understanding of how aging impacts normal lung function, redox balance, and injury-repair processes will inspire the development of new therapies to prevent and/or reverse age-associated pulmonary diseases, and ultimately increase health span and longevity. This review is intended to encourage basic, clinical, and translational research that will bridge knowledge gaps at the intersection of aging, oxidative stress, and lung disease to fuel the development of more effective therapeutic strategies for lung diseases that disproportionately afflict the elderly.


2018 ◽  
Vol 124 ◽  
pp. 577
Author(s):  
S. Zelzer ◽  
W. Wonisch ◽  
S. Rinnerhofer ◽  
T. Niedrist ◽  
F. Tatzber ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1991
Author(s):  
Janine Mett

Alzheimer’s disease (AD), the most common cause of dementia in the elderly population, is closely linked to a dysregulated cerebral lipid homeostasis and particular changes in brain fatty acid (FA) composition. The abnormal extracellular accumulation and deposition of the peptide amyloid-β (Aβ) is considered as an early toxic event in AD pathogenesis, which initiates a series of events leading to neuronal dysfunction and death. These include the induction of neuroinflammation and oxidative stress, the disruption of calcium homeostasis and membrane integrity, an impairment of cerebral energy metabolism, as well as synaptic and mitochondrial dysfunction. Dietary medium chain fatty acids (MCFAs) and polyunsaturated ω-3-fatty acids (ω-3-PUFAs) seem to be valuable for disease modification. Both classes of FAs have neuronal health-promoting and cognition-enhancing properties and might be of benefit for patients suffering from mild cognitive impairment (MCI) and AD. This review summarizes the current knowledge about the molecular mechanisms by which MCFAs and ω-3-PUFAs reduce the cerebral Aβ deposition, improve brain energy metabolism, and lessen oxidative stress levels.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2202
Author(s):  
Micaelle Oliveira de Luna Freire ◽  
Luciana Caroline Paulino do Nascimento ◽  
Kataryne Árabe Rimá de Oliveira ◽  
Alisson Macário de Oliveira ◽  
Thiago Henrique Napoleão ◽  
...  

High-fat diet (HFD) consumption has been linked to dyslipidemia, low-grade inflammation and oxidative stress. This study investigated the effects of a mixed formulation with Limosilactobacillusfermentum 139, L. fermentum 263 and L. fermentum 296 on cardiometabolic parameters, fecal short-chain fatty acid (SCFA) contents and biomarkers of inflammation and oxidative stress in colon and heart tissues of male rats fed an HFD. Male Wistar rats were grouped into control diet (CTL, n = 6), HFD (n = 6) and HFD with L. fermentum formulation (HFD-Lf, n = 6) groups. The L.fermentum formulation (1 × 109 CFU/mL of each strain) was administered twice a day for 4 weeks. After a 4-week follow-up, biochemical parameters, fecal SCFA, cytokines and oxidative stress variables were evaluated. HFD consumption caused hyperlipidemia, hyperglycemia, low-grade inflammation, reduced fecal acetate and propionate contents and increased biomarkers of oxidative stress in colon and heart tissues when compared to the CTL group. Rats receiving the L. fermentum formulation had reduced hyperlipidemia and hyperglycemia, but similar SCFA contents in comparison with the HFD group (p < 0.05). Rats receiving the L. fermentum formulation had increased antioxidant capacity throughout the colon and heart tissues when compared with the control group. Administration of a mixed L. fermentum formulation prevented hyperlipidemia, inflammation and oxidative stress in colon and heart tissues induced by HFD consumption.


Arthritis ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-28 ◽  
Author(s):  
Elizabeth Dean ◽  
Rasmus Gormsen Hansen

Low-grade inflammation and oxidative stress underlie chronic osteoarthritis. Although best-practice guidelines for osteoarthritis emphasize self-management including weight control and exercise, the role of lifestyle behavior change to address chronic low-grade inflammation has not been a focus of first-line management. This paper synthesizes the literature that supports the idea in which the Western diet and inactivity are proinflammatory, whereas a plant-based diet and activity are anti-inflammatory, and that low-grade inflammation and oxidative stress underlying osteoarthritis often coexist with lifestyle-related risk factors and conditions. We provide evidence-informed recommendations on how lifestyle behavior change can be integrated into “first-line” osteoarthritis management through teamwork and targeted evidence-based interventions. Healthy living can be exploited to reduce inflammation, oxidative stress, and related pain and disability and improve patients’ overall health. This approach aligns with evidence-based best practice and holds the promise of eliminating or reducing chronic low-grade inflammation, attenuating disease progression, reducing weight, maximizing health by minimizing a patient’s risk or manifestations of other lifestyle-related conditions hallmarked by chronic low-grade inflammation, and reducing the need for medications and surgery. This approach provides an informed cost effective basis for prevention, potential reversal, and management of signs and symptoms of chronic osteoarthritis and has implications for research paradigms in osteoarthritis.


2021 ◽  
Vol 19 ◽  
Author(s):  
Xia Li ◽  
Dianxuan Guo ◽  
Hualan Zhou ◽  
Youdong Hu ◽  
Xiang Fang ◽  
...  

Background: Pro-inflammatory mediators and oxidative stress are related to severity of angina pectoris in patients with coronary heart disease. Objective: We evaluated the effects of pro-inflammatory mediators and oxidative stress on recurrent angina pectoris after coronary artery stenting in elderly patients. Methods: We determined the expression levels of malondialdehyde (MDA), acrolein (ACR), tumour necrosis factor-α (TNF-α), toll-like receptor 4 (TLR4), superoxide dismutase 3 (SOD3), paraoxonase-1 (PON-1), stromal cell-derived factor-1α (SDF-1α) and endothelial progenitor cells (EPCs) in elderly patients with recurrent angina pectoris after coronary artery stenting. Results: Levels of MDA, ACR, TNF-α and TLR4 were significantly increased (p<0.001), and levels of SOD3, PON-1, SDF-1α and EPCs were significantly decreased (p<0.001) in the elderly patients with recurrent angina pectoris after coronary artery stenting. MDA, ACR, TNF-α and TLR4 as markers of oxidative stress and pro-inflammatory mediators may have suppressed SOD3, PON-1, SDF-1α and EPCs as markers of anti-oxidative stress/anti-inflammatory responses. Oxidative stress and pro-inflammatory mediators were important factors involved in recurrent angina pectoris of elderly patients after coronary artery stenting. Conclusion: Oxidative stress and pro-inflammatory mediators could be considered as potential non-invasive prognostic, predictive and therapeutic biomarkers for stable recurrent angina and recurrent unstable angina in the elderly patients after coronary artery stenting.


2019 ◽  
Vol 8 (9) ◽  
pp. 1385 ◽  
Author(s):  
Burgos-Morón ◽  
Abad-Jiménez ◽  
Marañón ◽  
Iannantuoni ◽  
Escribano-López ◽  
...  

Type 2 diabetes (T2D) is a metabolic disorder characterized by hyperglycemia and insulin resistance in which oxidative stress is thought to be a primary cause. Considering that mitochondria are the main source of ROS, we have set out to provide a general overview on how oxidative stress is generated and related to T2D. Enhanced generation of reactive oxygen species (ROS) and oxidative stress occurs in mitochondria as a consequence of an overload of glucose and oxidative phosphorylation. Endoplasmic reticulum (ER) stress plays an important role in oxidative stress, as it is also a source of ROS. The tight interconnection between both organelles through mitochondrial-associated membranes (MAMs) means that the ROS generated in mitochondria promote ER stress. Therefore, a state of stress and mitochondrial dysfunction are consequences of this vicious cycle. The implication of mitochondria in insulin release and the exposure of pancreatic β-cells to hyperglycemia make them especially susceptible to oxidative stress and mitochondrial dysfunction. In fact, crosstalk between both mechanisms is related with alterations in glucose homeostasis and can lead to the diabetes-associated insulin-resistance status. In the present review, we discuss the current knowledge of the relationship between oxidative stress, mitochondria, ER stress, inflammation, and lipotoxicity in T2D.


Sign in / Sign up

Export Citation Format

Share Document