scholarly journals The Dual Role of TGFβ in Human Cancer: From Tumor Suppression to Cancer Metastasis

2012 ◽  
Vol 2012 ◽  
pp. 1-28 ◽  
Author(s):  
Jean-Charles Neel ◽  
Laure Humbert ◽  
Jean-Jacques Lebrun

The transforming growth factor-beta (TGFβ) superfamily encompasses widespread and evolutionarily conserved polypeptide growth factors that regulate and orchestrate growth and differentiation in all cell types and tissues. While they regulate asymmetric cell division and cell fate determination during early development and embryogenesis, TGFβ family members play a major regulatory role in hormonal and immune responses, cell growth, cell death and cell immortalization, bone formation, tissue remodeling and repair, and erythropoiesis throughout adult life. The biological and physiological functions of TGFβ, the founding member of this family, and its receptors are of central importance to human diseases, particularly cancer. By regulating cell growth, death, and immortalization, TGFβ signaling pathways exert tumor suppressor effects in normal cells and early carcinomas. Thus, it is not surprising that a high number of human tumors arise due to mutations or deletions in the genes coding for the various TGFβ signaling components. As tumors develop and progress, these protective and cytostatic effects of TGFβ are often lost. TGFβ signaling then switches to promote cancer progression, invasion, and tumor metastasis. The molecular mechanisms underlying this dual role of TGFβ in human cancer will be discussed in depth in this paper, and it will highlight the challenge and importance of developing novel therapeutic strategies specifically aimed at blocking the prometastatic arm of the TGFβ signaling pathway without affecting its tumor suppressive effects.

Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1235 ◽  
Author(s):  
Tu ◽  
Huang ◽  
Huang ◽  
Luo ◽  
Yan

Primary liver cancer is one of the leading causes for cancer-related death worldwide. Transforming growth factor beta (TGF-β) is a pleiotropic cytokine that signals through membrane receptors and intracellular Smad proteins, which enter the nucleus upon receptor activation and act as transcription factors. TGF-β inhibits liver tumorigenesis in the early stage by inducing cytostasis and apoptosis, but promotes malignant progression in more advanced stages by enhancing cancer cell survival, EMT, migration, invasion and finally metastasis. Understanding the molecular mechanisms underpinning the multi-faceted roles of TGF-β in liver cancer has become a persistent pursuit during the last two decades. Contextual regulation fine-tunes the robustness, duration and plasticity of TGF-β signaling, yielding versatile albeit specific responses. This involves multiple feedback and feed-forward regulatory loops and also the interplay between Smad signaling and non-Smad pathways. This review summarizes the known regulatory mechanisms of TGF-β signaling in liver cancer, and how they channel, skew and even switch the actions of TGF-β during cancer progression.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Misha Mao ◽  
Yifan Cheng ◽  
Jingjing Yang ◽  
Yongxia Chen ◽  
Ling Xu ◽  
...  

AbstractThe role of PLAC8 in tumorigenesis has been gradually elucidated with the development of research. Although there are common molecular mechanisms that enforce cell growth, the impact of PLAC8 is varied and can, in some instances, have opposite effects on tumorigenesis. To systematically understand the role of PLAC8 in tumors, the molecular functions of PLAC8 in cancer will be discussed by focusing on how PLAC8 impacts tumorigenesis when it arises within tumor cells and how these roles can change in different stages of cancer progression with the ultimate goal of suppressing PLAC8-relevant cancer behavior and related pathologies. In addition, we highlight the diversity of PLAC8 in different tumors and its functional output beyond cancer cell growth. The comprehension of PLAC8’s molecular function might provide new target and lead to the development of novel anticancer therapies.


2021 ◽  
Vol 22 (24) ◽  
pp. 13181
Author(s):  
Jinwook Chung ◽  
Md Nazmul Huda ◽  
Yoonhwa Shin ◽  
Sunhee Han ◽  
Salima Akter ◽  
...  

The downregulation of reactive oxygen species (ROS) facilitates precancerous tumor development, even though increasing the level of ROS can promote metastasis. The transforming growth factor-beta (TGF-β) signaling pathway plays an anti-tumorigenic role in the initial stages of cancer development but a pro-tumorigenic role in later stages that fosters cancer metastasis. TGF-β can regulate the production of ROS unambiguously or downregulate antioxidant systems. ROS can influence TGF-β signaling by enhancing its expression and activation. Thus, TGF-β signaling and ROS might significantly coordinate cellular processes that cancer cells employ to expedite their malignancy. In cancer cells, interplay between oxidative stress and TGF-β is critical for tumorigenesis and cancer progression. Thus, both TGF-β and ROS can develop a robust relationship in cancer cells to augment their malignancy. This review focuses on the appropriate interpretation of this crosstalk between TGF-β and oxidative stress in cancer, exposing new potential approaches in cancer biology.


2019 ◽  
Vol 24 (39) ◽  
pp. 4611-4618 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Majid Khazaei ◽  
Gordon A. Ferns ◽  
Seyed H. Aghaee-Bakhtiari

Colorectal cancer (CRC) is one of the most common cancers globally and is associated with a high mortality rate. The transforming growth factor beta (TGF-β) signaling pathway plays an important role in normal intestinal tissue function, but has also been implicated in the development of CRC. MicroRNAs (miRNAs) have also recently emerged as important regulators of cancer development and progression. They act by targeting multiple signaling pathways including the TGF-β signaling pathway. There is growing evidence demonstrating that miRNAs target various components of the TGF-β signaling pathway, including TGF-β1, TGF-β2, regulatory SMADs (SMAD1, 2, 3, 5 and 9), co-mediator SMAD4, inhibitory SMADs (SMAD6 and 7) and the TGF-β receptors, and thereby alter the proliferation and migration of CRC cells. In this review, we summarize the data concerning the interaction between TGF-β signaling pathway and miRNAs with the aim to better understanding the CRC molecular mechanisms and hence better management of this disease.


2005 ◽  
Vol 23 (9) ◽  
pp. 2078-2093 ◽  
Author(s):  
Rebecca L. Elliott ◽  
Gerard C. Blobe

Transforming growth factor beta (TGF-β) is a ubiquitous and essential regulator of cellular and physiologic processes including proliferation, differentiation, migration, cell survival, angiogenesis, and immunosurveillance. Alterations in the TGF-β signaling pathway, including mutation or deletion of members of the signaling pathway and resistance to TGF-β-mediated inhibition of proliferation are frequently observed in human cancers. Although these alterations define a tumor suppressor role for the TGF-β pathway in human cancer, TGF-β also mediates tumor-promoting effects, either through differential effects on tumor and stromal cells or through a fundamental alteration in the TGF-β responsiveness of the tumor cells themselves. TGF-β and members of the TGF-β signaling pathway are being evaluated as prognostic or predictive markers for cancer patients. Ongoing advances in understanding the TGF-β signaling pathway will enable targeting of this pathway for the chemoprevention and treatment of human cancers.


2020 ◽  
Vol 21 (12) ◽  
pp. 4271 ◽  
Author(s):  
Daisy Y. Shu ◽  
Erik Butcher ◽  
Magali Saint-Geniez

Epithelial–mesenchymal transition (EMT) and endothelial–mesenchymal transition (EndMT) are physiological processes required for normal embryogenesis. However, these processes can be hijacked in pathological conditions to facilitate tissue fibrosis and cancer metastasis. In the eye, EMT and EndMT play key roles in the pathogenesis of subretinal fibrosis, the end-stage of age-related macular degeneration (AMD) that leads to profound and permanent vision loss. Predominant in subretinal fibrotic lesions are matrix-producing mesenchymal cells believed to originate from the retinal pigment epithelium (RPE) and/or choroidal endothelial cells (CECs) through EMT and EndMT, respectively. Recent evidence suggests that EMT of RPE may also be implicated during the early stages of AMD. Transforming growth factor-beta (TGFβ) is a key cytokine orchestrating both EMT and EndMT. Investigations in the molecular mechanisms underpinning EMT and EndMT in AMD have implicated a myriad of contributing factors including signaling pathways, extracellular matrix remodelling, oxidative stress, inflammation, autophagy, metabolism and mitochondrial dysfunction. Questions arise as to differences in the mesenchymal cells derived from these two processes and their distinct mechanistic contributions to the pathogenesis of AMD. Detailed discussion on the AMD microenvironment highlights the synergistic interactions between RPE and CECs that may augment the EMT and EndMT processes in vivo. Understanding the differential regulatory networks of EMT and EndMT and their contributions to both the dry and wet forms of AMD can aid the development of therapeutic strategies targeting both RPE and CECs to potentially reverse the aberrant cellular transdifferentiation processes, regenerate the retina and thus restore vision.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhilin Qiu ◽  
Qin Wang ◽  
Lei Liu ◽  
Guozheng Li ◽  
Yi Hao ◽  
...  

The dysregulation of transfer RNA (tRNA) expression contributes to the diversity of proteomics, heterogeneity of cell populations, and instability of the genome, which may be related to human cancer susceptibility. However, the relationship between tRNA dysregulation and cancer susceptibility remains elusive because the landscape of cancer-associated tRNAs has not been portrayed yet. Furthermore, the molecular mechanisms of tRNAs involved in tumorigenesis and cancer progression have not been systematically understood. In this review, we detail current knowledge of cancer-related tRNAs and comprehensively summarize the basic characteristics and functions of these tRNAs, with a special focus on their role and involvement in human cancer. This review bridges the gap between tRNAs and cancer and broadens our understanding of their relationship, thus providing new insights and strategies to improve the potential clinical applications of tRNAs for cancer diagnosis and therapy.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Sudipa Saha Roy ◽  
Ratna K. Vadlamudi

Metastatic breast cancer is a life-threatening stage of cancer and is the leading cause of death in advanced breast cancer patients. Estrogen signaling and the estrogen receptor (ER) are implicated in breast cancer progression, and the majority of the human breast cancers start out as estrogen dependent. Accumulating evidence suggests that ER signaling is complex, involving coregulatory proteins and extranuclear actions. ER-coregualtory proteins are tightly regulated under normal conditions with miss expression primarily reported in cancer. Deregulation of ER coregualtors or ER extranuclear signaling has potential to promote metastasis in ER-positive breast cancer cells. This review summarizes the emerging role of ER signaling in promoting metastasis of breast cancer cells, discusses the molecular mechanisms by which ER signaling contributes to metastasis, and explores possible therapeutic targets to block ER-driven metastasis.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Daniele Vergara ◽  
Pasquale Simeone ◽  
Marina Damato ◽  
Michele Maffia ◽  
Paola Lanuti ◽  
...  

With the advent of novel molecular platforms for high-throughput/next-generation sequencing, the communities of commensal and pathogenic microorganisms that inhabit the human body have been defined in depth. In the last decade, the role of microbiota-host interactions in driving human cancer plasticity and malignant progression has been well documented. Germ-free preclinical models provided an invaluable tool to demonstrate that the human microbiota can confer susceptibility to various types of cancer and can also modulate the host response to therapeutic treatments. Of interest, besides the detrimental effects of dysbiosis on cancer etiopathogenesis, specific microorganisms have been shown to exert protective activities against cancer growth. This has strong clinical implications, as restoration of the physiologic microbiota is being rapidly implemented as a novel anticancer therapeutic strategy. Here, we reviewed past and recent literature depicting the role of microbiota-host interactions in modulating key molecular mechanisms that drive human cancer plasticity and lead to malignant progression. We analyzed microbiota-host interactions occurring in the gut as well as in other anatomic sites, such as oral and nasal cavities, lungs, breast, esophagus, stomach, reproductive tract, and skin. We revealed a common ground of biological alterations and pathways modulated by a dysbiotic microbiota and potentially involved in the control of cancer progression. The molecular mechanisms most frequently affected by the pathogenic microorganisms to induce malignant progression involve epithelial-mesenchymal transition- (EMT-) dependent barrier alterations and tumor-promoting inflammation. This evidence may pave the way to better stratify high-risk cancer patients based on unique microenvironmental/microbial signatures and to develop novel, personalized, biological therapies.


2017 ◽  
Vol 6 (1) ◽  
pp. 1-14
Author(s):  
Juan F. Santibanez ◽  
Suncica Bjelica

Background: Transforming growth factor-beta1 (TGF-β1) is a pleiotropic cytokine with a double role in cancer through its capacity to inhibit early stages of tumors while enhancing tumor progression at late stages of tumor progression. Moreover, TGF-β1 is a potent immunosuppressive cytokine within the tumor microenvironment that allows cancer cells to escape from immune surveillance, which largely contributes to the tumor progression. Method: It has been established that the cancer progression is commonly associated with increased number of Myeloid-derived suppressor cells (MDSC) that are a hallmark of cancer and a key mechanism of immune evasion. Result: MDSC represent a population of heterogeneous myeloid cells comprised of macrophages, granulocytes and dendritic cells at immature stages of development. MDSC promote tumor progression by regulating immune responses as well as tumor angiogenesis and cancer metastasis. Conclusion: In this review, we present an overview of the main key functions of both TGF-β1 and MDSC in cancer and in the immune system. Furthermore, the mutual contribution between TGF-β1 and MDSC in the regulation of immune system and cancer development will be analyzed.


Sign in / Sign up

Export Citation Format

Share Document