scholarly journals Field mold stress induced catabolism of storage reserves in soybean seed and the resulting deterioration of seed quality in the field

2022 ◽  
Vol 21 (2) ◽  
pp. 336-350
Author(s):  
Jun-cai DENG ◽  
Xiao-man LI ◽  
Xin-li XIAO ◽  
Hai-jun WU ◽  
Cai-qiong YANG ◽  
...  
Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1473
Author(s):  
Zlatica Mamlic ◽  
Ivana Maksimovic ◽  
Petar Canak ◽  
Goran Mamlic ◽  
Vojin Djukic ◽  
...  

Soybean production in the system of organic agriculture is not very demanding, and this has been well documented both through experimental results and commercial production. However, one of the biggest problems in organic production is the lack of adequate pre-sowing treatments. Therefore, the aim of this study was to examine the effect of the electrostatic field. This is a physical treatment that was first used for seed treatment in the 18th century but has mostly been neglected since then. Seeds of five soybean genotypes with differently colored seed coats (yellow, green, dark green, brown, and black) were included in this study. The seeds were exposed to different values of direct current (DC) with the following voltages: 0 V (control), 3 V, 6 V, and 9 V, to which the seeds were exposed for 0 min (control), 1 min, and 3 min. After exposing the seeds to the electric field, the physiological properties of seeds and seedlings at the first stage of growth were evaluated. The results show that the effect of the electrostatic field on seed quality depends on the genotype, voltage, and exposure time. The application of DC can be a suitable method for improving seed germination and the initial growth of soybean seedlings. In addition, the results indicate that it is necessary to adjust the DC treatment (voltage and duration of exposure of seeds) to particular genotypes since inadequate treatments may reduce the quality of seeds.


2017 ◽  
Vol 38 (1) ◽  
pp. 57
Author(s):  
Daniele Piano Rosa ◽  
Danúbia Aparecida Costa Nobre ◽  
Diego Santos Oliveira ◽  
Francisco Charles dos Santos Silva ◽  
André Ricardo Gomes Bezerra ◽  
...  

This study aimed to assess the effect of genetic diversity on physiological quality of soybean seeds stored in cold chamber and under environmental conditions. Ten cultivars were assessed in a randomized factorial design (2x10). Factor 1 corresponded to two storage conditions and factor 2 to ten soybean cultivars, with four replications. The evaluated variables were total germination (G%), first count of germination (F%), percentage of abnormal seedlings (AS%), germination speed index (GSI), water content (WC), electrical conductivity (EC), dry matter of seedlings (DMS) and length of seedlings (LS). Data underwent ANOVA, followed by Scott Knott test, as well as multivariate analysis of genetic diversity. The results showed a higher physiological quality for seeds under cold storage. Half of the cultivars (FPS Júpiter, FPS Urano, FPS Antares, FPS Netuno and CD 250) presented high germination rates and seed vigor, being thus indicated as high-standard materials for further breeding programs. Besides that, storage environment had influence on the clustering of soybean cultivars. Moreover, cultivars had genetic dissimilarity for almost all assessed traits as G%, GSI, F%, AS%, EC, DMS and LS.


2010 ◽  
Vol 67 (5) ◽  
pp. 540-545 ◽  
Author(s):  
Bruno Guilherme Torres Licursi Vieira ◽  
Roberval Daiton Vieira ◽  
Francisco Carlos Krzyzanowski ◽  
José de Barros França Neto

The growing demand for high quality soybean [Glycine max (L.) Merrill] seeds requires a precise seed quality control system from the seed industry. One way to accomplish this is by improving vigor testing. Cold test has been traditionally employed for corn seeds. However, it has also been used for other seed crops such as cotton (Gossypium spp.), soybean (Glycine Max), dry bean (Phaseolus vulgaris) and pea (Pisum sativum). This study was carried out with the objective of adjusting an alternative procedure for the cold test to determine soybean seed vigor. Six commercial soybean seed lots of the cultivar BRS 133 were used. The physiological potential of the seed lots was evaluated by germination on paper towel and sand box, seedling field emergence, tetrazolium, accelerated aging and electrical conductivity tests. Seed moisture content was also determined. The temperature used for the cold test procedures was 10ºC during five days. Four cold test procedures were evaluated: i) plastic boxes with soil; ii) rolled paper towel with soil; iii) rolled paper towel without soil, and iv) an alternative procedure, using rolled paper towel without soil under cold water. A completely randomized experimental design with eight replications was used and the means were compared by the Tukey test (p = 0.05). To verify the dependence between the alternative test and others single linear correlation was used. All cold test procedures had similar coefficients of variation (CV), highlighting that rolled paper towel with soil and the alternative procedure had the best performance, with an average of 94% and 93% normal seedlings and CV of 3.2% and 3.6%, respectively. The alternative procedure has satisfactory results for estimating soybean seed vigor, yielding consistent results compared to the traditional procedure.


2016 ◽  
Vol 37 (3) ◽  
pp. 1219
Author(s):  
Danúbia Aparecida Costa Nobre ◽  
Carlos Sigueyuki Sediyama ◽  
Valter Arthur ◽  
Newton Deniz Piovesan ◽  
Alisson Santos Lopes da Silva

High quality seeds are required for soybean production. This study evaluated the effect of gamma irradiation and storage time on seed quality in soybean lines VX04-6828 and VX04-5692. Seeds were gamma irradiated (60Co) with 0, 50, 150, and 250 Gy. After the first seed production cycle (M1), the harvested seeds were stored in the laboratory for 0, 2, 4, and 6 months. Moisture content, seed quality (germination rate, dead seeds, and normal and abnormal seedlings), and seed vigor (first germination count, germination index, and seedling length) were determined. Data were submitted to analysis of variance for each soybean line using a 4 x 4 factorial design (four storage times x four gamma irradiation doses). Response surfaces were constructed based on the F test significance (p ? 0.05). VX04-5692 seeds were more sensitive to gamma radiation than were VX04-6828 seeds. Soybean seed quality was highest in M2 seeds derived from seeds irradiated with less than 100 Gy and stored for up to two months. High gamma irradiation doses and long storage times reduced soybean seed quality.


2016 ◽  
Vol 46 (10) ◽  
pp. 1695-1700
Author(s):  
Carlos André Bahry ◽  
Paulo Dejalma Zimmer

ABSTRACT: Evaluation of differential candidate gene expression in contrasting soybean seeds is an auxiliary tool in the partial elucidation of processes involved in seeds formation, as well as it contributes to the generation of new information that can be used in future research or in the development of r genetic superior constitutions. The aim of this study was to evaluate the expression of two candidate genes, SBP and leginsulin genes, possibly involved in seed quality, in contrasting coats of four soybean genotypes. Two cultivars of yellow soybeans were used, BMX Potência RR and CD 202, and two lines of black soybean, TP and IAC. Gene expression was evaluated using qPCR in seven stages of development from seed coats for four genotypes, at 25, 30, 35, 40, 45, 50, and 55 days after anthesis. The design was completely randomized, with three replications. Data were subjected to analysis of variance and means compared by Tukey's test at 5% probability. SBP and leginsulin gene have higher expression in the early phases of development from seed coats of BMX Potência RR cultivar, followed by the IAC line. These genotypes are therefore of interest for further research involving these genes.


2012 ◽  
Vol 34 (4) ◽  
pp. 541-548 ◽  
Author(s):  
Ísis Barreto Dantas ◽  
João Almir de Oliveira ◽  
Heloisa Oliveira dos Santos ◽  
Édila Vilela Resende Von Pinho ◽  
Sttela Dellyzete Veiga Franco da Rosa

Seed quality may be affected by several factors, including permeability, color, and lignin content in the seed coat. This study aimed at evaluating influence of lignin content in the tegument of seed samples of six different soybean cultivars, in which half of each sample was inoculated with the fungus Aspergillus flavus, on the physical and physiological quality, and on the seed health, during 180 days storage period, under cold chamber with controlled conditions of temperature and RH. For that, at each interval of 60 days, samples were removed, and the physiological quality of these seeds was assessed by means of moisture and lignin contents; and by tests of seed health, germination, and electrical conductivity. The moisture content of seeds remained constant during all storage period. In the seed health test, it was found that inoculation was efficient, once the minimum incidence of the fungus in the inoculated seeds was 85%. In the germination test, there was a trend of reduction on percentage germination with the increase in storage period. However, there was an increase on electrical conductivity of seeds assessed. It was concluded that there is no interference of the lignin content in the seed coat on the resistance to infection by the fungus Aspergillus flavus, even after seed storage for a period of 180 days.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (11) ◽  
pp. e1009114
Author(s):  
Hengyou Zhang ◽  
Wolfgang Goettel ◽  
Qijian Song ◽  
He Jiang ◽  
Zhenbin Hu ◽  
...  

Soybean [Glycine max (L.) Merr.] was domesticated from wild soybean (G. soja Sieb. and Zucc.) and has been further improved as a dual-use seed crop to provide highly valuable oil and protein for food, feed, and industrial applications. However, the underlying genetic and molecular basis remains less understood. Having combined high-confidence bi-parental linkage mapping with high-resolution association analysis based on 631 whole sequenced genomes, we mapped major soybean protein and oil QTLs on chromosome15 to a sugar transporter gene (GmSWEET39). A two-nucleotide CC deletion truncating C-terminus of GmSWEET39 was strongly associated with high seed oil and low seed protein, suggesting its pleiotropic effect on protein and oil content. GmSWEET39 was predominantly expressed in parenchyma and integument of the seed coat, and likely regulates oil and protein accumulation by affecting sugar delivery from maternal seed coat to the filial embryo. We demonstrated that GmSWEET39 has a dual function for both oil and protein improvement and undergoes two different paths of artificial selection. A CC deletion (CC-) haplotype H1 has been intensively selected during domestication and extensively used in soybean improvement worldwide. H1 is fixed in North American soybean cultivars. The protein-favored (CC+) haplotype H3 still undergoes ongoing selection, reflecting its sustainable role for soybean protein improvement. The comprehensive knowledge on the molecular basis underlying the major QTL and GmSWEET39 haplotypes associated with soybean improvement would be valuable to design new strategies for soybean seed quality improvement using molecular breeding and biotechnological approaches.


Author(s):  
Aleksandra Sudarić ◽  
Maja Matoša Kočar ◽  
Tomislav Duvnjak ◽  
Zvonimir Zdunić ◽  
Antonela Markulj Kulundžić

The potential of soybean for food, feed, and pharmaceutical industry arises from the composition of its seed. Since European countries import 95% of the annual demand for soybean grains, meal, and oil, causing an enormous trade deficit, the governments in Europe had started to introduce additional incentives to stimulate soybean cropping. To rebalance the sources of soybean supply in the future, production must be followed by continuous research to create varieties that would make European soybean more appealing to the processing industry and profitable enough to satisfy European farmers. This chapter is giving an overview of the European soybean seed quality research and an insight into soybean seed quality progress made at the Agricultural Institute Osijek, Croatia. The studies presented are mainly considering maturity groups suitable for growing in almost all European regions. The most important traits of soybean seed quality discussed are protein content and amino acid composition, oil content and fatty acid composition, soluble sugars, and isoflavones. Defining quality traits facilitates the parental selection in breeding programs aiming to improve the added value properties of final soybean products and enables the exchange of materials between different breeding and research institutions to introduce diversity, which is a prerequisite for genetic advance.


Sign in / Sign up

Export Citation Format

Share Document