scholarly journals The effect of temperature on differentSalmonellaserotypes during warm seasons in a Mediterranean climate city, Adelaide, Australia

2015 ◽  
Vol 144 (6) ◽  
pp. 1231-1240 ◽  
Author(s):  
A. MILAZZO ◽  
L. C. GILES ◽  
Y. ZHANG ◽  
A. P. KOEHLER ◽  
J. E. HILLER ◽  
...  

SUMMARYChanging trends in foodborne disease are influenced by many factors, including temperature. Globally and in Australia, warmer ambient temperatures are projected to rise if climate change continues.Salmonellaspp. are a temperature-sensitive pathogen and rising temperature can have a substantial effect on disease burden affecting human health. We examined the relationship between temperature andSalmonellaspp. and serotype notifications in Adelaide, Australia. Time-series Poisson regression models were fit to estimate the effect of temperature during warmer months onSalmonellaspp. and serotype cases notified from 1990 to 2012. Long-term trends, seasonality, autocorrelation and lagged effects were included in the statistical models. DailySalmonellaspp. counts increased by 1·3% [incidence rate ratio (IRR) 1·013, 95% confidence interval (CI) 1·008–1·019] per 1 °C rise in temperature in the warm season with greater increases observed in specific serotype and phage-type cases ranging from 3·4% (IRR 1·034, 95% CI 1·008–1·061) to 4·4% (IRR 1·044, 95% CI 1·024–1·064). We observed increased cases ofS. Typhimurium PT9 andS. Typhimurium PT108 notifications above a threshold of 39 °C. This study has identified the impact of warm season temperature on differentSalmonellaspp. strains and confirms higher temperature has a greater effect on phage-type notifications. The findings will contribute targeted information for public health policy interventions, including food safety programmes during warmer weather.

2018 ◽  
Vol 29 (1) ◽  
pp. 64-70 ◽  
Author(s):  
MH Uddin ◽  
MS Alim ◽  
SMM Islam ◽  
H Rashid ◽  
M Shahjahan

The study was carried out to determine the effect of temperature changes on acute toxicity of pyrethroid pesticide cypermethrin in zebrafish. A two-day renewal bioassay system for 96h was conducted to find out LC50 value of cypermethrin at two temperature regimes i.e. 25°C and 30°C considering as T1 and T2, respectively. During the determination of LC50 in both temperatures, blood glucose (mg/dL) levels were measured at lower concentration (0.25 µg/L) of cypermethrin. The results of acute toxicity test at 96h LC50 values were calculated through probit analysis. It was found that 96h LC50 for T1 and T2 groups were about 2.1 and 1.4 µg/L, respectively. Significantly lower LC50 of cypermethrin at T2 compared to T1 showed that higher temperature increased the toxicity of cypermethrin. There was a significant increase (P<0.05) in blood glucose level (mg/dL) in 0.25 µg/L compared to 0 µg/L concentration of cypermethrin at both treatments. Dissolved oxygen decreased and free CO2 increased significantly (P<0.05) with increasing temperature, while the pH of the water was almost unchanged throughout the study period. The present study indicated the impact of increased temperature on pesticide toxicity in the aquatic ecosystem.Progressive Agriculture 29 (1): 64-70, 2018 


2004 ◽  
Vol 55 (4) ◽  
pp. 331 ◽  
Author(s):  
J. W. Forsythe

The impact of temperature on cephalopod growth has become a productive area of study. Current knowledge of squid growth owes much to earlier laboratory studies on octopuses and cuttlefishes that revealed rapid temperature-sensitive growth. Advances in laboratory culture of squids eventually revealed the dramatic extent to which rising water temperature accelerates growth rates. This led to proposal and testing of a working hypothesis, the Forsythe Hypothesis, that during periods of gradually warming temperature, monthly cohorts of squids experience warmer conditions and grow faster, and perhaps larger, than older, earlier-hatched cohorts. The advent of statolith increment analysis for determining age in field-caught squids has provided a powerful tool in ground-truthing this hypothesis in nature. This hypothesis, now termed here the Forsythe Effect, has been laboratory- and field-tested over the past 10 years and been strongly supported. Food availability and inherent species-specific physiological limits must also be accounted for in predicting growth. Gaps still exist in our precise understanding of the temperature-induced changes in form and duration of squid growth. Acute and chronic ocean-scale seawater-temperature change events will compel us to look to squids as ‘bioindicators’ of environmental condition and to statoliths as the ‘archives’ of this information.


Author(s):  
P. R. Swann ◽  
W. R. Duff ◽  
R. M. Fisher

Recently we have investigated the phase equilibria and antiphase domain structures of Fe-Al alloys containing from 18 to 50 at.% Al by transmission electron microscopy and Mössbauer techniques. This study has revealed that none of the published phase diagrams are correct, although the one proposed by Rimlinger agrees most closely with our results to be published separately. In this paper observations by transmission electron microscopy relating to the nucleation of disorder in Fe-24% Al will be described. Figure 1 shows the structure after heating this alloy to 776.6°C and quenching. The white areas are B2 micro-domains corresponding to regions of disorder which form at the annealing temperature and re-order during the quench. By examining specimens heated in a temperature gradient of 2°C/cm it is possible to determine the effect of temperature on the disordering reaction very precisely. It was found that disorder begins at existing antiphase domain boundaries but that at a slightly higher temperature (1°C) it also occurs by homogeneous nucleation within the domains. A small (∼ .01°C) further increase in temperature caused these micro-domains to completely fill the specimen.


Author(s):  
S.E. Rudov ◽  
◽  
V.Ya. Shapiro ◽  
O.I. Grigoreva ◽  
I.V. Grigorev ◽  
...  

In the Russian Federation logging operations are traditionally carried out in winter. This is due to the predominance of areas with swamped and water-logged (class III and IV) soils in the forest fund, where work of forestry equipment is difficult, and sometimes impossible in the warm season. The work of logging companies in the forests of the cryolithozone, characterized by a sharply continental climate, with severe frosts in winter, is hampered by the fact that forest machines are not recommended to operate at temperatures below –40 °C due to the high probability of breaking of metal structures and hydraulic system. At the same time, in the warm season, most of the cutting areas on cryosolic soils become difficult to pass for heavy forest machines. It turns out that the convenient period for logging in the forests of the cryolithozone is quite small. This results in the need of work in the so-called off-season period, when the air temperature becomes positive, and the thawing processes of the soil top layer begin. The same applies to the logging companies not operating in the conditions of cryosolic soils, for instance, in the Leningrad, Novgorod, Pskov, Vologda regions, etc. The observed climate warming has led to a significant reduction in the sustained period of winter logging. Frequent temperature transitions around 0 °C in winter, autumn and spring necessitate to work during the off-season too, while cutting areas thaw. In bad seasonal and climatic conditions, which primarily include off-season periods in general and permafrost in particular, it is very difficult to take into account in mathematical models features of soil freezing and thawing and their effect on the destruction nature. The article shows that the development of long-term predictive models of indicators of cyclic interaction between the skidding system and forest soil in adverse climatic conditions of off-season logging operations in order to improve their reliability requires rapid adjustment of the calculated parameters based on the actual experimental data at a given step of the cycles.


Author(s):  
Lily N Edwards-Callaway ◽  
M Caitlin Cramer ◽  
Caitlin N Cadaret ◽  
Elizabeth J Bigler ◽  
Terry E Engle ◽  
...  

ABSTRACT Shade is a mechanism to reduce heat load providing cattle with an environment supportive of their welfare needs. Although heat stress has been extensively reviewed, researched, and addressed in dairy production systems, it has not been investigated in the same manner in the beef cattle supply chain. Like all animals, beef cattle are susceptible to heat stress if they are unable to dissipate heat during times of elevated ambient temperatures. There are many factors that impact heat stress susceptibility in beef cattle throughout the different supply chain sectors, many of which relate to the production system, i.e. availability of shade, microclimate of environment, and nutrition management. The results from studies evaluating the effects of shade on production and welfare are difficult to compare due to variation in structural design, construction materials used, height, shape, and area of shade provided. Additionally, depending on operation location, shade may or may not be beneficial during all times of the year, which can influence the decision to make shade a permanent part of management systems. Shade has been shown to lessen the physiologic response of cattle to heat stress. Shaded cattle exhibit lower respiration rates, body temperatures, and panting scores compared to un-shaded cattle in weather that increases the risk of heat stress. Results from studies investigating the provision of shade indicate that cattle seek shade in hot weather. The impact of shade on behavioral patterns is inconsistent in the current body of research, some studies indicating shade provision impacts behavior and other studies reporting no difference between shaded and un-shaded groups. Analysis of performance and carcass characteristics across feedlot studies demonstrated that shaded cattle had increased ADG, improved feed efficiency, HCW, and dressing percentage when compared to cattle without shade. Despite the documented benefits of shade, current industry statistics, although severely limited in scope, indicate low shade implementation rates in feedlots and data in other supply chain sectors do not exist. Industry guidelines and third party on-farm certification programs articulate the critical need for protection from extreme weather but are not consistent in providing specific recommendations and requirements. Future efforts should include: updated economic analyses of cost versus benefit of shade implementation, exploration of producer perspectives and needs relative to shade, consideration of shade impacts in the cow-calf and slaughter plant segments of the supply chain, and integration of indicators of affective (mental) state and preference in research studies to enhance the holistic assessment of cattle welfare.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aiyan Guan ◽  
Inge Van Damme ◽  
Frank Devlieghere ◽  
Sarah Gabriël

AbstractAnisakidae, marine nematodes, are underrecognized fish-borne zoonotic parasites. Studies on factors that could trigger parasites to actively migrate out of the fish are very limited. The objective of this study was to assess the impact of different environmental conditions (temperature, CO2 and O2) on larval motility (in situ movement) and mobility (migration) in vitro. Larvae were collected by candling or enzymatic digestion from infected fish, identified morphologically and confirmed molecularly. Individual larvae were transferred to a semi-solid Phosphate Buffered Saline agar, and subjected to different temperatures (6 ℃, 12 ℃, 22 ℃, 37 ℃) at air conditions. Moreover, different combinations of CO2 and O2 with N2 as filler were tested, at both 6 °C and 12 °C. Video recordings of larvae were translated into scores for larval motility and mobility. Results showed that temperature had significant influence on larval movements, with the highest motility and mobility observed at 22 ℃ for Anisakis spp. larvae and 37 ℃ for Pseudoterranova spp. larvae. During the first 10 min, the median migration of Anisakis spp. larvae was 10 cm at 22 ℃, and the median migration of Pseudoterranova spp. larvae was 3 cm at 37 ℃. Larval mobility was not significantly different under the different CO2 or O2 conditions at 6 °C and 12 ℃. It was concluded that temperature significantly facilitated larval movement with the optimum temperature being different for Anisakis spp. and Pseudoterranova spp., while CO2 and O2 did not on the short term. This should be further validated in parasite-infected/spiked fish fillets.


2021 ◽  
pp. 109963622199387
Author(s):  
Mathilde Jean-St-Laurent ◽  
Marie-Laure Dano ◽  
Marie-Josée Potvin

The effect of extreme cold temperatures on the quasi-static indentation and the low velocity impact behavior of woven carbon/epoxy composite sandwich panels with Nomex honeycomb core was investigated. Impact tests were performed at room temperature, –70°C, and –150°C. Two sizes of hemispherical impactor were used combined to three different impactor masses. All the impact tests were performed at the same initial impact velocity. The effect of temperature on the impact behavior is investigated by studying the load history, load-displacement curves and transmitted energy as a function of time curves. Impact damage induced at various temperatures was studied using different non-destructive and destructive techniques. Globally, more damages are induced with impact temperature decreasing. The results also show that the effect of temperature on the impact behavior is function of the impactor size.


BMJ Open ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. e043863
Author(s):  
Jingyuan Wang ◽  
Ke Tang ◽  
Kai Feng ◽  
Xin Lin ◽  
Weifeng Lv ◽  
...  

ObjectivesWe aim to assess the impact of temperature and relative humidity on the transmission of COVID-19 across communities after accounting for community-level factors such as demographics, socioeconomic status and human mobility status.DesignA retrospective cross-sectional regression analysis via the Fama-MacBeth procedure is adopted.SettingWe use the data for COVID-19 daily symptom-onset cases for 100 Chinese cities and COVID-19 daily confirmed cases for 1005 US counties.ParticipantsA total of 69 498 cases in China and 740 843 cases in the USA are used for calculating the effective reproductive numbers.Primary outcome measuresRegression analysis of the impact of temperature and relative humidity on the effective reproductive number (R value).ResultsStatistically significant negative correlations are found between temperature/relative humidity and the effective reproductive number (R value) in both China and the USA.ConclusionsHigher temperature and higher relative humidity potentially suppress the transmission of COVID-19. Specifically, an increase in temperature by 1°C is associated with a reduction in the R value of COVID-19 by 0.026 (95% CI (−0.0395 to −0.0125)) in China and by 0.020 (95% CI (−0.0311 to −0.0096)) in the USA; an increase in relative humidity by 1% is associated with a reduction in the R value by 0.0076 (95% CI (−0.0108 to −0.0045)) in China and by 0.0080 (95% CI (−0.0150 to −0.0010)) in the USA. Therefore, the potential impact of temperature/relative humidity on the effective reproductive number alone is not strong enough to stop the pandemic.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rui Zhang ◽  
Yujie Meng ◽  
Hejia Song ◽  
Ran Niu ◽  
Yu Wang ◽  
...  

Abstract Background Although exposure to air pollution has been linked to many health issues, few studies have quantified the modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo, China. Methods The data of daily incidence of influenza and the relevant meteorological data and air pollution data in Ningbo from 2014 to 2017 were retrieved. Low, medium and high temperature layers were stratified by the daily mean temperature with 25th and 75th percentiles. The potential modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo was investigated through analyzing the effects of air pollutants stratified by temperature stratum using distributed lag non-linear model (DLNM). Stratified analysis by sex and age were also conducted. Results Overall, a 10 μg/m3 increment of O3, PM2.5, PM10 and NO2 could increase the incidence risk of influenza with the cumulative relative risk of 1.028 (95% CI 1.007, 1.050), 1.061 (95% CI 1.004, 1.122), 1.043 (95% CI 1.003, 1.085), and 1.118 (95% CI 1.028, 1.216), respectively. Male and aged 7–17 years were more sensitive to air pollutants. Through the temperature stratification analysis, we found that temperature could modify the impacts of air pollution on daily incidence of influenza with high temperature exacerbating the impact of air pollutants. At high temperature layer, male and the groups aged 0–6 years and 18–64 years were more sensitive to air pollution. Conclusion Temperature modified the relationship between air pollution and daily incidence of influenza and high temperature would exacerbate the effects of air pollutants in Ningbo.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 307
Author(s):  
Chi Zhang ◽  
Naixia Mou ◽  
Jiqiang Niu ◽  
Lingxian Zhang ◽  
Feng Liu

Changes in snow cover over the Tibetan Plateau (TP) have a significant impact on agriculture, hydrology, and ecological environment of surrounding areas. This study investigates the spatio-temporal pattern of snow depth (SD) and snow cover days (SCD), as well as the impact of temperature and precipitation on snow cover over TP from 1979 to 2018 by using the ERA5 reanalysis dataset, and uses the Mann–Kendall test for significance. The results indicate that (1) the average annual SD and SCD in the southern and western edge areas of TP are relatively high, reaching 10 cm and 120 d or more, respectively. (2) In the past 40 years, SD (s = 0.04 cm decade−1, p = 0.81) and SCD (s = −2.3 d decade−1, p = 0.10) over TP did not change significantly. (3) The positive feedback effect of precipitation is the main factor affecting SD, while the negative feedback effect of temperature is the main factor affecting SCD. This study improves the understanding of snow cover change and is conducive to the further study of climate change on TP.


Sign in / Sign up

Export Citation Format

Share Document