scholarly journals Diet diversity and environment determine the intestinal microbiome and bacterial pathogen load of fire salamanders

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Wang ◽  
Hannah K. Smith ◽  
Evy Goossens ◽  
Lionel Hertzog ◽  
Molly C. Bletz ◽  
...  

AbstractDiverse communities of symbiotic microbes inhabit the digestive systems of vertebrates and play a crucial role in animal health, and host diet plays a major role in shaping the composition and diversity of these communities. Here, we characterized diet and gut microbiome of fire salamander populations from three Belgian forests. We carried out DNA metabarcoding on fecal samples, targeting eukaryotic 18S rRNA of potential dietary prey items, and bacterial 16S rRNA of the concomitant gut microbiome. Our results demonstrated an abundance of soft-bodied prey in the diet of fire salamanders, and a significant difference in the diet composition between males and females. This sex-dependent effect on diet was also reflected in the gut microbiome diversity, which is higher in males than female animals. Proximity to human activities was associated with increased intestinal pathogen loads. Collectively, the data supports a relationship between diet, environment and intestinal microbiome in fire salamanders, with potential health implications.

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 112-112
Author(s):  
Thomas Burkey

Abstract The gut microbiome is essential to animal health. Many factors, including both environmental (e.g. diet) and host-related (e.g. genetic background, sex, age), shape the intestinal microbiome. Pioneers in gut microbiology have stressed the critical importance of interactions among the diet, the gut microbiota, and the host on animal health and disease. Different protein types (e.g. plant-based vs. animal-based) have been shown to have differential effects on the gut microbiome. In addition, there is evidence of compartment-specific and amino acid-specific interactions that occur within the gastrointestinal tract. The result of these interactions must be considered to be essential as a variety of metabolites are produced and, for example, act as nutrients and modulators of physiologic processes. Our overarching goal is to discuss protein/amino acid effects on pig microbial ecology, health, and nutrition.


2020 ◽  
Vol 14 ◽  
pp. 117863022094224
Author(s):  
Lorina Badger-Emeka ◽  
Yasmeen Al-Mulhim ◽  
Fatimah Al-Muyidi ◽  
Maram Busuhail ◽  
Salma Alkhalifah ◽  
...  

Background: The 21st century has seen a wide range of diseases resulting from zoonotic infections, of which bacterial infections have led to outbreaks of food-borne diseases. Aim: The study looks at bacterial pathogen carriage by farm rats and their antimicrobial susceptibility, with the view of providing insights for antimicrobial surveillance. Method: Farm rats of Rattus rattus species where randomly collected alive from farms in Al-Ahsa using food baits. They were anaesthetize with urethane within 4 h of collection and were unconscious for the collection of samples. Basic bacteriological culturing methods were used for culturing of bacterial isolates on selective media while the Vitek 2 compact automated system (BioMerieux, Marcy L’Etoile, France) was used for bacteria identification and antimicrobial susceptibility test. Obtained data were analysed using chi-square and paired t-test with significant difference between sensitive and resistance to antimicrobial susceptibility taken at P < .05. Results: Isolated Gramme-negative pathogenic bacteria included strains of Escherichia coli, Pseudomonas oryzihabitans, strains of Pseudomonas aeruginosa, and Salmonella. For the Gramme-positive bacteria, 4 strains of Staphylococcus aureus were encountered. Other Gramme-positive bacteria were coagulase-negative Staphylococcal species (CoNS) as well as Staphylococcus lugdunensis. There was a 100% resistance to the penicillins and a high resistance to imipenem (71%) by the Staphylococcal isolates. Resistance was also high against the β-lactams by the Gramme-positive bacteria isolates. For the Gramme-negative bacteria, there was a higher than 50% resistance by the isolates against the following antibiotics: ampicillin (78%), amoxicillin/clavulanic acid (67%), cefotaxime (77%), ceftazidime (67%), cefepime (78%), norfloxacin (67%), nitrofurantoin (67%), and trimethoprim/sulfamethoxazole (78%). Conclusion: The results showed high antimicrobial resistance that will need monitoring for control of spread from farm rats to humans.


This article presents the results of studying the impact of housing and feeding conditions on broiler chickens of Hubbard RedBro cross, as well as the quality of products obtained when using floor and cage content, in a farm. It established that when receiving a mixed feed of own production using feed raw materials grown on a farm without the use of pesticides, a statistically significant decrease in potentially dangerous substances for animal health is recorded. Compared with factory feed, it has reduced the content of pesticides by 14 times, and mercury and arsenic by 24 times, cadmium by five times, and lead by ten times. The results of the study of economic indicators of growing Hubbard RedBro cross broiler chickens, as well as the chemical composition and quality of carcasses, indicated that there was no significant difference between the floor and cell conditions of keeping. Still, the use of a diet based on eco-feeds contributed to a statistically significant decrease in the concentration of toxic metals in the muscles of the poultry of the experimental groups. As a result, it found that the use of the studied compound feed in the diets of broiler chickens increased the indicators of Biosafety and ensured the production of environmentally safe ("organic") poultry meat products.


Dose-Response ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 155932582098794
Author(s):  
Imran Mukhtar ◽  
Haseeb Anwar ◽  
Osman Asghar Mirza ◽  
Qasim Ali ◽  
Muhammad Umar Ijaz ◽  
...  

In the contemporary research world, the intestinal microbiome is now envisioned as a new body organ. Recently, the gut microbiome represents a new drug target in the gut, since various orthologues of intestinal drug transporters are also found present in the microbiome that lines the small intestine of the host. Owing to this, absorbance of sulpiride by the gut microbiome in an in vivo albino rats model was assessed after the oral administration with a single dose of 20mg/kg b.w. The rats were subsequently sacrificed at 2, 3, 4, 5 and 6 hours post oral administration to collect the gut microbial mass pellet. The drug absorbance by the gut microbiome was determined by pursuing the microbial lysate through RP-HPLC-UV. Total absorbance of sulpiride by the whole gut microbiome and drug absorbance per milligram of microbial pellet were found significantly higher at 4 hours post-administration as compared to all other groups. These results affirm the hypothesis that the structural homology between membrane transporters of the gut microbiome and intestinal epithelium of the host might play an important role in drug absorbance by gut microbes in an in vivo condition.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 463
Author(s):  
Mariusz Sikora ◽  
Albert Stec ◽  
Magdalena Chrabaszcz ◽  
Aleksandra Knot ◽  
Anna Waskiel-Burnat ◽  
...  

(1) Background: A growing body of evidence highlights that intestinal dysbiosis is associated with the development of psoriasis. The gut–skin axis is the novel concept of the interaction between skin diseases and microbiome through inflammatory mediators, metabolites and the intestinal barrier. The objective of this study was to synthesize current data on the gut microbial composition in psoriasis. (2) Methods: We conducted a systematic review of studies investigating intestinal microbiome in psoriasis, using the PRISMA checklist. We searched MEDLINE, EMBASE, and Web of Science databases for relevant published articles (2000–2020). (3) Results: All of the 10 retrieved studies reported alterations in the gut microbiome in patients with psoriasis. Eight studies assessed alpha- and beta-diversity. Four of them reported a lack of change in alpha-diversity, but all confirmed significant changes in beta-diversity. At the phylum-level, at least two or more studies reported a lower relative abundance of Bacteroidetes, and higher Firmicutes in psoriasis patients versus healthy controls. (4) Conclusions: There is a significant association between alterations in gut microbial composition and psoriasis; however, there is high heterogeneity between studies. More unified methodological standards in large-scale studies are needed to understand microbiota’s contribution to psoriasis pathogenesis and its modulation as a potential therapeutic strategy.


Circulation ◽  
2021 ◽  
Vol 144 (Suppl_2) ◽  
Author(s):  
Alexandra Weissman ◽  
Mariam Bramah Lawani ◽  
Thomas Rohan ◽  
Clifton W CALLAWAY

Introduction: Pneumonia is common after OHCA but is difficult to diagnose in the first 72 hours following ROSC, this results in early untargeted antibiotic administration based on non-specific imaging and laboratory findings. Antibiotic resistance is rising, is influenced by untargeted antibiotic administration, and can increase patient morbidity and mortality as well as healthcare costs. Precision methods of bacterial pathogen detection in OHCA patients are needed to improve patient care. This proof-of-concept pilot study aimed to assess feasibility of bacterial pathogen sequencing and comparability of sequencing results to clinical culture after OHCA. Methods: Blood and bronchoalveolar lavage (BAL) were obtained from residual clinical specimens collected within 12 hours of ROSC. Bacterial DNA was extracted using the Qiagen PowerLyzer PowerSoil DNA kit, sequenced using the MinION nanopore sequencer, and analyzed with Oxford Nanopore Technologies’ EPI2ME bioinformatics software. Sequencing results were compared to culture results using McNemar’s chi-square statistic. Study-defined pneumonia was based on presence of at least two characteristics within 72 hours of ROSC: fever (temperature ≥38°C); persistent leukocytosis >15,000 or leukopenia <3,500 for 48 hours; persistent chest radiography infiltrates for 48 hours per clinical radiology read; bacterial pathogen cultured. Results: We enrolled 38 consecutive OHCA subjects: mean age 61.8 years (18.0); 16 (42%) female; 25 (66%) White, 7 (18%) Black, 6 (16%) “Other” race; 7 subjects (18%) survived and 31 (82%) died; 16 (42%) subjects had pneumonia. Sequencing results were available in 12 hours while culture results were available in 48-72 hours after collection. There was a non-significant difference in the proportion of the same pathogens identified for each method per McNemar’s chi-square: p = 0.38, difference of 0.095 (-0.095, 0.286). Conclusions: Nanopore sequencing detects pathogenic bacteria comparable to clinical microbiologic culture and in less time. This technology can produce a paradigm shift in early bacterial pathogen detection in OHCA survivors, which can improve patient care. The technology is applicable to other patient populations and for viral and fungal pathogens.


2021 ◽  
Vol 20 (1) ◽  
pp. 95-105
Author(s):  
Chala Bedasa ◽  
◽  
Ararsa Duguma ◽  
Asamenew Tesfaye ◽  
Tadele Tolosa ◽  
...  

A cross sectional study on infectious bursal disease was conducted in apparently healthy backyard chicken at Waliso district of Southwestern Shoa, central oromia, Ethiopia from from November, 2018 to October, 2019. A total of 282 chickens were randomly selected to estimate seroprevalence of IBD infection and to identify the likely potential risk factors for the disease. Serum samples collected and serological test conducted in laboratory at National Animal Health Diagnosis and Investigation Center Sebeta, Ethopia. Out of 282 serum samples tested 224 were positive for indirect ELISA technique and the overall seroprevalence of IBDV in the study area was found to be 79.43% at individual level. Educational level of owners, kebeles and flock size significantly affect seroprevalence of IBD in the study area. The effect of difference in managements like source of replacement, frequency of house cleaning, use of disinfectant and isolation practice has a significant effect on IBDV sero-prevalence. A lower seroprevalence of IBDV was reported in good hygienic level of house (26.7%) than poor level of chicken house hygiene (96.4%) with statistically significant difference (P < 0.05). The seroprevalence of IBDV in the present study associated with chicken management, flock size, owner education level and other animal related risk factors for occurrence of the disease. Therefore, awareness on chicken health management, and importance of immunization would help to minimize the prevalence of the disease and play crucial role in the control of the disease. Furthermore, characterizing virus strains circulating in the area in future study is recommended.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Jessica Diaz ◽  
Aspen T. Reese

AbstractBecause of its potential to modulate host health, the gut microbiome of captive animals has become an increasingly important area of research. In this paper, we review the current literature comparing the gut microbiomes of wild and captive animals, as well as experiments tracking the microbiome when animals are moved between wild and captive environments. As a whole, these studies report highly idiosyncratic results with significant differences in the effect of captivity on the gut microbiome between host species. While a few studies have analyzed the functional capacity of captive microbiomes, there has been little research directly addressing the health consequences of captive microbiomes. Therefore, the current body of literature cannot broadly answer what costs, if any, arise from having a captive microbiome in captivity. Addressing this outstanding question will be critical to determining whether it is worth pursuing microbial manipulations as a conservation tool. To stimulate the next wave of research which can tie the captive microbiome to functional and health impacts, we outline a wide range of tools that can be used to manipulate the microbiome in captivity and suggest a variety of methods for measuring the impact of such manipulation preceding therapeutic use. Altogether, we caution researchers against generalizing results between host species given the variability in gut community responses to captivity and highlight the need to understand what role the gut microbiome plays in captive animal health before putting microbiome manipulations broadly into practice.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262057
Author(s):  
Claire A. Woodall ◽  
Luke J. McGeoch ◽  
Alastair D. Hay ◽  
Ashley Hammond

Respiratory tract infections (RTIs) are extremely common and can cause gastrointestinal tract symptoms and changes to the gut microbiota, yet these effects are poorly understood. We conducted a systematic review to evaluate the reported evidence of gut microbiome alterations in patients with a RTI compared to healthy controls (PROSPERO: CRD42019138853). We systematically searched Medline, Embase, Web of Science, Cochrane and the Clinical Trial Database for studies published between January 2015 and June 2021. Studies were eligible for inclusion if they were human cohorts describing the gut microbiome in patients with an RTI compared to healthy controls and the infection was caused by a viral or bacterial pathogen. Dual data screening and extraction with narrative synthesis was performed. We identified 1,593 articles and assessed 11 full texts for inclusion. Included studies (some nested) reported gut microbiome changes in the context of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) (n = 5), influenza (H1N1 and H7N9) (n = 2), Tuberculosis (TB) (n = 4), Community-Acquired Pneumonia CAP (n = 2) and recurrent RTIs (rRTI) (n = 1) infections. We found studies of patients with an RTI compared to controls reported a decrease in gut microbiome diversity (Shannon) of 1.45 units (95% CI, 0.15–2.50 [p, <0.0001]) and a lower abundance of taxa (p, 0.0086). Meta-analysis of the Shannon value showed considerable heterogeneity between studies (I2, 94.42). Unbiased analysis displayed as a funnel plot revealed a depletion of Lachnospiraceae, Ruminococcaceae and Ruminococcus and enrichment of Enterococcus. There was an important absence in the lack of cohort studies reporting gut microbiome changes and high heterogeneity between studies may be explained by variations in microbiome methods and confounder effects. Further human cohort studies are needed to understand RTI-induced gut microbiome changes to better understand interplay between microbes and respiratory health.


Author(s):  
Xiaoyu Su ◽  
Zhenbao Jia ◽  
Fei Tao ◽  
Jiamin Shen ◽  
Jingwen Xu ◽  
...  

Phytochemical-enriched edible greens, sweet potato leaves (Ipomoea batatas L.), have become popular due to potential health benefits. However, the phytochemical contents in sweet potato leaves and their subsequent change over harvest stages and growth condition are mostly unknown. In this study, the anthocyanin profile and content in leaves of four sweet potato cultivars, i.e., white-skinned and white-fleshed Bonita, red-skinned and orange-fleshed Beauregard, red-skinned and white-fleshed Murasaki and purple-skinned and purple-fleshed P40, were evaluated. Fourteen anthocyanins were isolated and identified by HPLC-MSI/MS. The most abundant was cyanidin 3-caffeoyl-p-hydroxybenzoyl sophoroside-5-glucoside, which comprised up to 20% of the total anthocyanins. Of the young leaves (1st and 2nd slip cuttings), Bonita contained the highest anthocyanin content followed by P40. Of the mature leaves (vine stage), Beauregard had the greatest anthocyanin (592.5 ± 86.4 mg/kg DW) and total phenolic (52.2 ± 3 mg GAE/g DW). It should be noted that the lowest anthocyanin and total phenolic content of shoots were found in P40, while tubers of P40 contain the highest content of each. Furthermore, the increase in leaf anthocyanin content over the growth stages that was observed in three of the cultivars but not in P40. No significant difference of anthocyanin content was found in Beauregard leaves grown in the high tunnels when compared with that in the open field. This study demonstrated for the first time that anthocyanin levels were significantly changed in response to various growth stages but not high tunnel condition, indicating that the effect of anthocyanin biosynthesis in sweet potato leaves is highly variable and genotype specific.


Sign in / Sign up

Export Citation Format

Share Document