scholarly journals Stability of the chaperonin system GroEL–GroES under extreme environmental conditions

2020 ◽  
Vol 22 (6) ◽  
pp. 3734-3743
Author(s):  
Michel W. Jaworek ◽  
Simone Möbitz ◽  
Mimi Gao ◽  
Roland Winter

The chaperonin system GroEL–GroES rescues proteins from improper folding at external stress conditions up to 70 °C and pressures of 1 kbar.

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 903
Author(s):  
Wenrui Gao ◽  
Yan Liu ◽  
Juan Huang ◽  
Yaqiu Chen ◽  
Chen Chen ◽  
...  

Seed germination is an important phase transitional period of angiosperm plants during which seeds are highly sensitive to different environmental conditions. Although seed germination is under the regulation of salicylic acid (SA) and other hormones, the molecular mechanism underlying these regulations remains mysterious. In this study, we determined the expression of SA methyl esterase (MES) family genes during seed germination. We found that MES7 expression decreases significantly in imbibed seeds, and the dysfunction of MES7 decreases SA content. Furthermore, MES7 reduces and promotes seed germination under normal and salt stress conditions, respectively. The application of SA restores the seed germination deficiencies of mes7 mutants under different conditions. Taking together, our observations uncover a MeSA hydrolytic enzyme, MES7, regulates seed germination via altering SA titer under normal and abiotic stress conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Joana Barbosa ◽  
Sandra Borges ◽  
Ruth Camilo ◽  
Rui Magalhães ◽  
Vânia Ferreira ◽  
...  

Objective. A total of 725Listeria monocytogenesisolates, 607 from various foods and 118 from clinical cases of listeriosis, were investigated concerning their ability to form biofilms, at 4°C during 5 days and at 37°C during 24 h.Methods. Biofilm production was carried out on polystyrene tissue culture plates. FiveL. monocytogenesisolates were tested for biofilm formation after being exposed to acidic and osmotic stress conditions.Results. Significant differences (P<0.01) between clinical and food isolates were observed. At 37°C for 24 h, most food isolates were classified as weak or moderate biofilm formers whereas all the clinical isolates were biofilm producers, although the majority were weak. At 4°C during 5 days, 65 and 59% isolates, from food and clinical cases, respectively, were classified as weak. After both sublethal stresses, at 37°C just one of the five isolates tested was shown to be more sensitive to subsequent acidic exposure. However, at 4°C both stresses did not confer either sensitivity or resistance.Conclusions. Significant differences between isolates origin, temperature, and sublethal acidic stress were observed concerning the ability to form biofilms. Strain, origin, and environmental conditions can determine the level of biofilm production byL. monocytogenesisolates.


2014 ◽  
Vol 42 (2) ◽  
pp. 485-490 ◽  
Author(s):  
Charanpreet Kaur ◽  
Ajit Ghosh ◽  
Ashwani Pareek ◽  
Sudhir K. Sopory ◽  
Sneh L. Singla-Pareek

The glyoxalase pathway is required for detoxification of cytotoxic metabolite MG (methylglyoxal) that would otherwise increase to lethal concentrations under adverse environmental conditions. Since its discovery 100 years ago, several roles have been assigned to glyoxalases, but, in plants, their involvement in stress response and tolerance is the most widely accepted role. The plant glyoxalases have emerged as multigene family and this expansion is considered to be important from the perspective of maintaining a robust defence machinery in these sessile species. Glyoxalases are known to be differentially regulated under stress conditions and their overexpression in plants confers tolerance to multiple abiotic stresses. In the present article, we review the importance of glyoxalases in plants, discussing possible roles with emphasis on involvement of the glyoxalase pathway in plant stress tolerance.


Genetika ◽  
2021 ◽  
Vol 53 (1) ◽  
pp. 419-456
Author(s):  
Qurban Ali ◽  
Arif Malik

The yield potential and quality of main cereals crop plants including maize, wheat, rice and barley have improved through breeding and introduction of transgenic crop plants from last three decades. There has been intensive research for the improvement of resistance against biotic and abiotic environmental conditions to safe the potential of cereal crop plants. Among abiotic stresses drought and heat are two most important abiotic factors which caused major loss in yield and quality of crop plants. The heat stress leads towards drought due to loss of water from soil and plant surfaces, therefore drought and heat caused combined adverse effects on plant morphological, physiological and yield traits which leads to reduce crop plant potential. There has been always an interaction among the environmental conditions and crop plants to produce grain and restore productivity. The drought and heat stress caused changes at cellular level, molecular changes and gene expression changes in cereals at various vegetative and reproductive stages/phases of crop growth and development. A large number of genes have indentified in cereals which switch up-regulated and down-regulated during drought and heat stress conditions. However, there is a need to improve resistance in cereals at gene level to maintain potential of yield and quality under abiotic stress conditions like drought, heat, salinity, and cold.


2020 ◽  
Vol 14 (4) ◽  
pp. 2729-2743
Author(s):  
Lakshmi Singh ◽  
Santosh Kumar Sethi

The current interest of scientific study aims at survival mechanisms of the cyanobacteria on the extreme habitats (i.e. building facades and monuments) growing under adverse conditions. The present investigation points towards finding out indigenous which are tolerant of conflicting environmental conditions, such as pH, temperature and calcium carbonate. Three isolates of cyanobacteria Scytonema coactile, Scytonema geitleri and Lyngbya aerugineo–coerulea from a cave, building façade, and temple, Orissa respectively were examined. Tolerance to stress at different pH and temperature were evaluated by quantifying cyanobacteria growth at different time intervals. Tolerance to CaCO3 was studied by subjecting the isolates to the desired concentration 0.0001 – 1% w/v. Each organism was grown for 15 days at 25°C ± 1°C under continuous light intensity (7.5 W/m2) and then harvested, succeeded by SDS gel-electrophoresis protein analysis. Results revealed that three isolated cyanobacteria species from different sub-aerial habitats responded in a specific manner to different stress conditions and to various concentration of CaCO3 concerning protein synthesis. A 30 and 38 kDa protein was overproduced by all isolates under pH and temperature stress, whereas for CaCO3 stress, the protein of 16 and 22 kDa was overproduced by Lyngbya aerugineo–coerulea respectively which concluded that the survival of the isolates under stress conditions depends on specific protein synthesis. Generally, isolates tolerant to different stress may be due to specific protein synthesis for their survival to extreme habitats.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Min Wang ◽  
Ruirui Wang ◽  
Luis Alejandro Jose Mur ◽  
Jianyun Ruan ◽  
Qirong Shen ◽  
...  

AbstractSilicon (Si), the second most abundant element in Earth’s crust, exerts beneficial effects on the growth and productivity of a variety of plant species under various environmental conditions. However, the benefits of Si and its importance to plants are controversial due to differences among the species, genotypes, and the environmental conditions. Although Si has been widely reported to alleviate plant drought stress in both the Si-accumulating and nonaccumulating plants, the underlying mechanisms through which Si improves plant water status and maintains water balance remain unclear. The aim of this review is to summarize the morphoanatomical, physiological, biochemical, and molecular processes that are involved in plant water status that are regulated by Si in response to drought stress, especially the integrated modulation of Si-triggered drought stress responses in Si accumulators and intermediate- and excluder-type plants. The key mechanisms influencing the ability of Si to mitigate the effects of drought stress include enhancing water uptake and transport, regulating stomatal behavior and transpirational water loss, accumulating solutes and osmoregulatory substances, and inducing plant defense- associated with signaling events, consequently maintaining whole-plant water balance. This study evaluates the ability of Si to maintain water balance under drought stress conditions and suggests future research that is needed to implement the use of Si in agriculture. Considering the complex relationships between Si and different plant species, genotypes, and the environment, detailed studies are needed to understand the interactions between Si and plant responses under stress conditions.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2305
Author(s):  
Adrián Ramón-Moragues ◽  
Patricia Carulla ◽  
Carlos Mínguez ◽  
Arantxa Villagrá ◽  
Fernando Estellés

Heat stress plays a role in livestock production in warm climates. Heat stress conditions impair animal welfare and compromise the productive and reproductive performance of dairy cattle. Under heat stress conditions, dairy cattle modify their behavior. Thus, the assessment of behavior alterations can be an indicator of environmental or physiological anomalies. Moreover, precision livestock farming allows for the individual and constant monitoring of animal behavior, arising as a tool to assess animal welfare. The purpose of this study was to evaluate the effect of heat stress on the behavior of dairy cows using activity sensors. The study was carried out in Tinajeros (Albacete, Spain) during the summer of 2020. Activity sensors were installed in 40 cows registering 6 different behaviors. Environmental conditions (temperature and humidity) were also monitored. Hourly data was calculated for both animal behavior and environmental conditions. Temperature and Heat Index (THI) was calculated for each hour. The accumulated THI during the previous 24 h period was determined for each hour, and the hours were statistically classified in quartiles according to the accumulated THI. Two groups were defined as Q4 for no stress and Q1 for heat stress. The results showed that animal behavior was altered under heat stress conditions. Increasing THI produces an increase in general activity, changes in feeding patterns and a decrease in rumination and resting behaviors, which is detrimental to animal welfare. Daily behavioral patterns were also affected. Under heat stress conditions, a reduction in resting behavior during the warmest hours and in rumination during the night was observed. In conclusion, heat stress affected all behaviors recorded as well as the daily patterns of the cows. Precision livestock farming sensors and the modelling of daily patterns were useful tools for monitoring animal behavior and detecting changes due to heat stress.


2021 ◽  
Vol 5 ◽  
Author(s):  
Anoush Miriam Ficiciyan ◽  
Jacqueline Loos ◽  
Teja Tscharntke

Global agrobiodiversity is threatened by the replacement of traditional, locally adapted crop varieties with high-yielding and hybrid varieties during the past 60 years, resulting in associated losses of crop, variety, and allele diversity. Locally adapted, traditional varieties are known to perform equal or even better under environmental stress conditions and to be more resilient in unstable cultivation environments. Therefore, European organic vegetable breeding organizations conserve local, traditional varieties and breed new varieties in low-input organic environments, aiming to increase the range of varieties for sustainable cultivation under sub-optimal growing conditions. However, performance of organic vegetable varieties, in comparison to conventional high-yielding and hybrid varieties, under different environmental conditions has not been intensively researched. To contribute to this scientific field, we compared the agronomic and quality performance between hybrid, conventional, and organic tomato and sweet pepper varieties, two economically important species on the EU market under a) well-watered and b) drought stress conditions, using five different varieties (i.e., 30 varieties) as replicates in each of the six groups. Performance of both species was negatively affected by drought, regardless of the breeding background. Equally, for tomato and sweet pepper, hybrids produced higher amounts of individual fruits, however total yield in kg was comparable for hybrid, conventional and organic plants. Considering the agro-ecological importance of enlarging and securing variety diversity in light of changing environmental conditions, we show that the assumed benefits of the hybrids can also be delivered by the organic and conventional varieties. These varieties should be considered as an important source of genetic resources, supporting farmers to adapt to their local climate and environmental conditions in the future.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2576
Author(s):  
Brenda Anabel López-Ruiz ◽  
Estephania Zluhan-Martínez ◽  
María de la Paz Sánchez ◽  
Elena R. Álvarez-Buylla ◽  
Adriana Garay-Arroyo

As sessile organisms, plants must adjust their growth to withstand several environmental conditions. The root is a crucial organ for plant survival as it is responsible for water and nutrient acquisition from the soil and has high phenotypic plasticity in response to a lack or excess of them. How plants sense and transduce their external conditions to achieve development, is still a matter of investigation and hormones play fundamental roles. Hormones are small molecules essential for plant growth and their function is modulated in response to stress environmental conditions and internal cues to adjust plant development. This review was motivated by the need to explore how Arabidopsis thaliana primary root differentially sense and transduce external conditions to modify its development and how hormone-mediated pathways contribute to achieve it. To accomplish this, we discuss available data of primary root growth phenotype under several hormone loss or gain of function mutants or exogenous application of compounds that affect hormone concentration in several abiotic stress conditions. This review shows how different hormones could promote or inhibit primary root development in A. thaliana depending on their growth in several environmental conditions. Interestingly, the only hormone that always acts as a promoter of primary root development is gibberellins.


2013 ◽  
Vol 5 (1) ◽  
pp. 103-107
Author(s):  
Reena Laharia

In Epizootic ulcerative syndrome (EUS) affected Channa punctatus and Clarias magur, the serum total proteins were decreased by 24.63% and 38.75% respectively along with A:G ratio. During immune response, the antibodies produced were found to be positively exponential with the amount of antigens (bacteria, fungus and viruses). The present changes may be because of the changing environmental conditions especially temperature fluctuations producing stress conditions in the fishes.


Sign in / Sign up

Export Citation Format

Share Document