Lactation-induced changes in metabolic status and follicular-fluid metabolomic profile in postpartum dairy cows

2016 ◽  
Vol 28 (12) ◽  
pp. 1882 ◽  
Author(s):  
Niamh Forde ◽  
Aoife O'Gorman ◽  
Helena Whelan ◽  
Pat Duffy ◽  
Lydia O'Hara ◽  
...  

The aim was to investigate the effect of lactation on the composition of pre-ovulatory follicular fluid (FF). Forty in-calf primiparous heifers and 20 maiden heifers were enrolled. Immediately after calving, half of the cows were dried off while the remainder were milked twice daily. Serum samples were collected twice weekly from two weeks pre- to 84 days postpartum (dpp). FF was analysed by gas chromatography–mass spectrometry. Serum concentrations of non-esterified fatty acids and β-hydroxybutyrate were higher, while glucose, insulin and Insulin-like growth factor 1 (IGF1) concentrations were lower in lactating cows compared with non-lactating cows and heifers (P < 0.01). Principal component analysis of FF metabolites revealed a clear separation of the lactating group from both non-lactating cows and heifers. The amino acids tyrosine, phenylalanine and valine and fatty acids heneicosanoic acid and docosahexaenoic acid were all lower in FF from lactating compared with dry cows (P < 0.05). FF from lactating cows was higher in aminoadipic acid, α-aminobutyric acid, glycine and serine while histidine, leucine, lysine, methionine and ornithine were all lower than in dry cows and heifers (P < 0.05). The ratio of n6 : n3 was higher in lactating cows compared with both non-lactating cows and heifers, whereas total n3 polyunsaturated fatty acids, pentadecanoic, linolenic, elaidic and arachidonic acids were all lower in the FF of lactating cows than both non-lactating cows and heifers (P < 0.05). In conclusion, lactation induces distinct changes in the overall metabolic status of postpartum lactating dairy cows which are associated with divergent metabolite profiles in FF.

Reproduction ◽  
2010 ◽  
Vol 139 (6) ◽  
pp. 1047-1055 ◽  
Author(s):  
K Bender ◽  
S Walsh ◽  
A C O Evans ◽  
T Fair ◽  
L Brennan

There has been a marked decline in the fertility of dairy cows over the past decades, and metabolomic analysis offers a potential to investigate the underlying causes. Metabolite composition of the follicular fluid, which presents the intrafollicular environment, may be an important factor affecting oocyte maturation and subsequent early embryo development. The aim of the present study was to investigate the metabolic differences between follicular fluid from the dominant follicle of lactating cows and heifers using gas chromatography mass spectrometry (GC–MS)-based metabolomics. Follicular fluid and serum were collected from cows and heifers over three phases of follicle development: newly selected dominant follicles, preovulatory follicles prior to oestrus and post-LH surge follicles. Analysis of the fatty acids revealed that there were 24 fatty acids and 9 aqueous metabolites significantly different between cows and heifers. Of particular interest were the higher concentrations of saturated fatty acids (palmitic acid, P=0.001; stearic acid, P=0.005) in follicular fluid from cows and higher docosahexaenoic acid levels (P=0.022) in follicular fluid from heifers. Analysis of the metabolite composition of serum revealed that follicular fluid had a unique lipid composition. The higher concentrations of detrimental saturated fatty in cows will have a negative impact on oocyte maturation and early embryo development. Overall, the results suggest that the follicle microenvironment in cows potentially places their oocytes at a developmental disadvantage compared with heifers, and that this may contribute to well-characterised differences in fertility.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2174
Author(s):  
Chengkeng Tan ◽  
Jinap Selamat ◽  
Nuzul Noorahya Jambari ◽  
Rashidah Sukor ◽  
Suganya Murugesu ◽  
...  

Globally, village chicken is popular and is known as a premium meat with a higher price. Food fraud can occur by selling other chicken breeds at a premium price in local markets. This study aimed to distinguish local village chicken from other chicken breeds available in the market, namely, colored broiler (Hubbard), broiler (Cobb), and spent laying hen (Dekalb) in pectoralis major and serum under commercial conditions using an untargeted metabolomics approach. Both pectoralis major and serum were analyzed using gas chromatography–mass spectrometry (GC–MS). The principal component analysis (PCA) results distinguished four different chicken breeds into three main groups for pectoralis major and serum. A total of 30 and 40 characteristic metabolites were identified for pectoralis major and serum, respectively. The four chicken breeds were characterized by the abundance of metabolites such as amino acids (L−glutamic acid, L−threonine, L−serine, L−leucine), organic acids (L−lactic acid, succinic acid, 3−hydroxybutyric acid), sugars (D−allose, D−glucose), sugar alcohols (myo−inositol), and fatty acids (linoleic acid). Our results suggest that an untargeted metabolomics approach using GC–MS and PCA could discriminate chicken breeds for pectoralis major and serum under commercial conditions. In this study, village chicken could only be distinguished from colored broiler (Hubbard) by serum samples.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3122
Author(s):  
Jalil Ghassemi Nejad ◽  
Bae-Hun Lee ◽  
Ji-Yung Kim ◽  
Kyung-Il Sung ◽  
Hong-Gu Lee

The effects of grazing lactating cows in mountainous areas for 12 and 24 h compared with the confined indoor system were evaluated by examining the overall milk fatty acid and cortisol. Twenty-one dairy cows were allocated to three treatment groups: (1) control (confined management system in a free-stall barn; TMR based), (2) grazing for 12 h (12hG; TMR plus grazing pasture), and (3) grazing for 24 h (24hG; pasture-based feeding system). Dry matter intake was higher in the control and 12hG groups than in the 24hG group. The yields of total milk and the 3.5% fat-corrected milk were the lowest in the 24hG group. Milk fat was the highest in the 24hG group and higher in 12hG compared with the control group. Milk protein and lactose levels were the highest in the 12hG group. The highest somatic cell count was observed in the 24hG group. The saturated fatty acid levels were higher in the control group compared with the 12hG and 24hG groups. There was no difference in overall mono-unsaturated fatty acids between 12hG and 24hG groups. Poly-unsaturated fatty acids were higher in the 12hG group compared with the control and 24hG groups. There was no difference in omega-6 (ω-6) fatty acids among the groups, and omega-3 fatty acids were higher in the 12hG group than in the control group. Milk cortisol was the highest in the 24hG group and higher in the control group compared with the 12hG group. Taken together, grazing for 12 h is advisable for farms that have access to mountainous areas to improve the milk fatty acid profile and decrease the stress levels in high-yielding Holstein lactating cows.


2016 ◽  
Vol 32 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Radojica Djokovic ◽  
Zoran Ilic ◽  
Vladimir Kurcubic ◽  
Milan Petrovic ◽  
Violeta Caro-Petrovic ◽  
...  

The objective of the present study was to investigate nutritional and metabolic status in Simmental cows during early and mid-lactation. Fifteen early lactating cows and 15 mid lactating cows were chosen for the investigation. Blood samples were collected to measure beta-hydroxybutyrate (BHB), nonesterified fatty acids (NEFA), triglycerides (TG), glucose and the activity of aspartate transaminase (AST). Early lactation as compared to mid lactating cows were found to have significantly higher (P<0.05) blood serum concentrations of NEFA, BHB and AST and lower blood serum concentrations of glucose (P<0.05) and TG (P>0.05). Significantly negative correlations were observed between BHB and glucose (P<0.01), BHB and TG (P<0.05), NEFA and glucose (P<0.05). Significantly positive correlations were observed between NEFA and BHB (P<0.05), NEFA and AST (P<0.05), glucose and TG (P<0.01). The results suggest that these parameters can serve as useful indicators of the nutritional and metabolic status of dairy cows during lactation.


Marine Drugs ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 169
Author(s):  
Roberto Barone ◽  
Lorenzo De Napoli ◽  
Luciano Mayol ◽  
Marina Paolucci ◽  
Maria Grazia Volpe ◽  
...  

Algae have multiple similarities with fungi, with both belonging to the Thallophyte, a polyphyletic group of non-mobile organisms grouped together on the basis of similar characteristics, but not sharing a common ancestor. The main difference between algae and fungi is noted in their metabolism. In fact, although algae have chlorophyll-bearing thalloids and are autotrophic organisms, fungi lack chlorophyll and are heterotrophic, not able to synthesize their own nutrients. However, our studies have shown that the extremophilic microalga Galderia sulphuraria (GS) can also grow very well in heterotrophic conditions like fungi. This study was carried out using several approaches such as scanning electron microscope (SEM), gas chromatography/mass spectrometry (GC/MS), and infrared spectrophotometry (ATR-FTIR). Results showed that the GS, strain ACUF 064, cultured in autotrophic (AGS) and heterotrophic (HGS) conditions, produced different biomolecules. In particular, when grown in HGS, the algae (i) was 30% larger, with an increase in carbon mass that was 20% greater than AGS; (ii) produced higher quantities of stearic acid, oleic acid, monounsaturated fatty acids (MUFAs), and ergosterol; (iii) produced lower quantities of fatty acid methyl esters (FAMEs) such as methyl palmytate, and methyl linoleate, saturated fatty acids (SFAs), and poyliunsaturated fatty acids (PUFAs). ATR-FTIR and principal component analysis (PCA) statistical analysis confirmed that the macromolecular content of HGS was significantly different from AGS. The ability to produce different macromolecules by changing the trophic conditions may represent an interesting strategy to induce microalgae to produce different biomolecules that can find applications in several fields such as food, feed, nutraceutical, or energy production.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Eun-Ju Kim ◽  
Young-Shick Hong ◽  
Seung-Ho Seo ◽  
Seong-Eun Park ◽  
Chang-Su Na ◽  
...  

Sasang constitutional medicine classifies human beings into four types based on their physical and psychological characteristics. Despite its potential value in achieving personalized medicine, the diagnosis of sasang constitution (SC) type is complex and subjective. In this study, gas chromatography–mass spectrometry and 1H nuclear magnetic resonance–based metabolic analyses were conducted to find maker metabolites in serum and urine according to different SC types. Although some samples were overlapped on orthogonal projection to latent structure discriminant analysis score plots, serum samples showed separation between different SC types. Levels of lactate, glutamate, triglyceride, and fatty acids in serum and glycolic acid in urine of Tae-Eum type were higher than those of So-Eum and So-Yang type. Fatty acids, triglyceride, and lactate levels were found to be metabolites related to body mass index, indicating that marker metabolites for the diagnosis of SC type could be associated with obese. However, Tae-Eum type showed higher lactate levels in serum than So-Yang type for both normal weight and overweight groups, suggesting that the contents of serum lactate might be dependent on the SC type regardless of body weight. These results suggest that metabolomics analysis could be used to determine SC type.


2012 ◽  
Vol 80 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Tasja Kälber ◽  
Michael Kreuzer ◽  
Florian Leiber

Fresh buckwheat (Fagopyrum esculentum) and chicory (Cichorium intybus) had been shown to have the potential to improve certain milk quality traits when fed as forages to dairy cows. However, the process of ensiling might alter these properties. In the present study, two silages, prepared from mixtures of buckwheat or chicory and ryegrass, were compared with pure ryegrass silage (Lolium multiflorum) by feeding to 3 × 6 late-lactating cows. The dietary dry matter proportions realised for buckwheat and chicory were 0·46 and 0·34 accounting also for 2 kg/d of concentrate. Data and samples were collected from days 10 to 15 of treatment feeding. Buckwheat silage was richest in condensed tannins. Proportions of polyunsaturated fatty acids (PUFA) and α-linoleic acid in total fatty acids (FA) were highest in the ryegrass silage. Feed intake, milk yield and milk gross composition did not differ among the groups. Feeding buckwheat resulted in the highest milk fat concentrations (g/kg) of linoleic acid (15·7) and total PUFA (40·5; bothP < 0·05 compared with ryegrass). The concentration of α-linolenic acid in milk fat was similar across treatments, but its apparent recovery in milk relative to the amounts ingested was highest with buckwheat. The same was true for the occurrence of FA biohydrogenation products in milk relative to α-linolenic acid intake. Recovery of dietary linoleic acid in milk remained unaffected. Feeding buckwheat silage shortened rennet coagulation time by 26% and tended (P < 0·1) to increase curd firmness by 29%. In conclusion, particularly buckwheat silage seems to have a certain potential to modify the transfer of FA from feed to milk and to contribute to improved cheese-making properties.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 562
Author(s):  
Adela Pintea ◽  
Francisc Vasile Dulf ◽  
Andrea Bunea ◽  
Sonia Ancuța Socaci ◽  
Elena Andreea Pop ◽  
...  

Lipophilic constituents are important for the color and aroma of apricots, but also for their health benefits. In the present study, carotenoids, fatty acids, and volatiles were analyzed in 11 apricot cultivars, from which nine were obtained in Romania. High performance liquid chromatography coupled to a diode array detector with atmospheric pressure chemical ionization and mass spectrometry (HPLC-DAD-APCI-MS methodology applied on unsaponified carotenoid extracts allowed the identification and quantification of 19 compounds. The predominant carotenoids in all cultivars were all-trans-β-carotene and its cis isomers. Lutein was present exclusively in non-esterified form, while β-cryptoxanthin was predominantly esterified, mainly with oleic, palmitic, lauric, and stearic acid. Moreover, β-cryptoxanthin linoleate, linolenate, and stearate were detected for the first time in Harogem cultivar. Variation in carotenoid content and composition was observed, with the highest carotenoid content being recorded in Tudor, Harogem, and Mamaia cultivars. The predominant fatty acids determined by gas chromatography–mass spectrometry (GC-MS) were linoleic (up to 47%), palmitic (up to 32.7%), and linolenic (up to 17.16%), with small variations among cultivars. In-tube extraction technique (ITEX)/GC-MS was applied for profiling the volatiles in apricot fruits and 120 compounds were identified, with terpenoids and esters as the most abundant classes. Principal component analysis (PCA) revealed that the carotenoids and the fatty acids profile can be used for variety authentication and discrimination in apricots.


2017 ◽  
Vol 12 (4) ◽  
pp. 1934578X1701200 ◽  
Author(s):  
Mohammad Raish ◽  
Ajaz Ahmad ◽  
Basit L. Jan ◽  
Khalid M. Alkharfy ◽  
Kazi Mohsin ◽  
...  

Diabetic nephropathy is a common complication of diabetes mellitus and one of the major etiologies of end-stage renal disease. Specific therapeutic interventions are necessary to treat such complications. The present study was designed to investigate the metabolomic changes induced by thymoquinone for the treatment of diabetic nephropathy, using a rodent model. Rats were divided into three different groups (n = 6 each): control, diabetic, and thymoquinone-treated diabetic groups. Metabolites in serum samples were analyzed via gas chromatography-mass spectrometry. Multiple changes were observed, including those related to the metabolism of amino acids and fatty acids. The correlation analysis suggested that treatment with thymoquinone led to the reversal of diabetic nephropathy that was associated with modulations in the metabolism and proteolysis of amino acids, fatty acids, glycerol phospholipids, and organic acids. In addition, we explored the mechanisms linking the metabolic profiling of diabetic nephropathy, with a particular emphasis on the potential roles of increased reactive oxygen species production and mitochondrial dysfunctions. Our findings demonstrated that metabolomic profiling provided significant insights into the basic mechanisms of diabetic nephropathy and the therapeutic effects of thymoquinone.


2016 ◽  
Vol 91 (4) ◽  
pp. 462-469 ◽  
Author(s):  
A.D. da Silva ◽  
A.S. da Silva ◽  
M.D. Baldissera ◽  
C.I. Schwertz ◽  
N.B. Bottari ◽  
...  

AbstractThe aim of this study was to analyse the oxidative and anti-oxidant status in serum samples from dairy cows naturally infected by Dictyocaulus viviparus and its relation with pathological analyses. The diagnosis of the disease was confirmed by necropsy of one dairy cow with heavy infection by the parasite in the lungs and bronchi. Later, blood and faeces were collected from another 22 cows from the same farm to measure reactive oxygen species (ROS) levels, thiobarbituric acid-reactive substances (TBARS), catalase (CAT) and superoxide dismutase (SOD) activities on day 0 (pre-treatment) and day 10 (post-treatment with eprinomectin). Faecal examination confirmed the infection in all lactating cows. However, the number of D. viviparus larvae per gram of faeces varied between animals. Cows showed different degrees of severity according to respiratory clinical signs of the disease (cough and nasal secretion). Further, they were classified and divided into two groups: those with mild (n = 10) and severe disease (n = 12). Increased levels of TBARS (P < 0.001), ROS (P = 0.002) and SOD activity (P < 0.001), as well as reduced CAT activity (P < 0.001) were observed in cows with severe clinical signs of the disease compared to those with mild clinical signs. Eprinomectin treatment (day 10) caused a reduction of ROS levels (P = 0.006) and SOD activity (P < 0.001), and an increase of CAT activity (P = 0.05) compared to day 0 (pre-treatment). TBARS levels did not differ with treatment (P = 0.11). In summary, increased ROS production and lipid peroxidation altered CAT and SOD activities, as an adaptive response against D. viviparus infection, contributing to the occurrence of oxidative stress and severity of the disease. Treatment with eprinomectin eliminated the infection, and thus minimized oxidative stress in dairy cows.


Sign in / Sign up

Export Citation Format

Share Document