Restoration of immune and renal function in aged females by re-establishment of active ovarian function

2017 ◽  
Vol 29 (10) ◽  
pp. 2052 ◽  
Author(s):  
Rhett L. Peterson ◽  
Kate C. Parkinson ◽  
Jeffrey B. Mason

Proper immune functioning is necessary to maximize reproductive success. In addition, age-associated uremia in women is often associated with hypothalamic­–pituitary–gonadal dysfunction. In the present experiments, we tested immune and renal function to determine if exposure of postreproductive mice to young, reproductively cycling ovaries would influence non-reproductive physiological functions. Control female CBA/J mice were evaluated at 6, 13 and 16 months of age. Additional mice received new (60-day-old) ovaries at 12 months of age and were evaluated at 16 months of age. Consequently, 6-month-old control mice and 16-month-old recipient mice both possessed 6-month-old ovaries and were reproductively cycling. A significant age-related decline in immune function (T-cell subset analysis) was found in 16-month-old mice, but was improved 64% by ovarian transplantation. Renal function (blood urea nitrogen : creatinine ratio) was also decreased with aging, but ovarian transplantation restored function to levels found in 6-month-old mice. In summary, we have shown that immune and renal function, which are negatively influenced by aging, can be positively influenced or restored by re-establishment of active ovarian function in aged female mice. These findings provide a strong incentive for further investigation of the positive influence of young ovaries on restoration of health in postreproductive females.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Rhett L. Peterson ◽  
Kate C. Parkinson ◽  
Jeffrey B. Mason

Previously, transplantation of ovaries from young cycling mice into old postreproductive-age mice increased life span. We anticipated that the same factors that increased life span could also influence health span. Female CBA/J mice received new (60 d) ovaries at 12 and 17 months of age and were evaluated at 16 and 25 months of age, respectively. There were no significant differences in body weight among any age or treatment group. The percentage of fat mass was significantly increased at 13 and 16 months of age but was reduced by ovarian transplantation in 16-month-old mice. The percentages of lean body mass and total body water were significantly reduced in 13-month-old control mice but were restored in 16- and 25-month-old recipient mice by ovarian transplantation to the levels found in six-month-old control mice. In summary, we have shown that skeletal muscle mass, which is negatively influenced by aging, can be positively influenced or restored by reestablishment of active ovarian function in aged female mice. These findings provide strong incentive for further investigation of the positive influence of young ovaries on restoration of health in postreproductive females.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hanwen Liu ◽  
Chunyan Jiang ◽  
Boya La ◽  
Meng Cao ◽  
Song Ning ◽  
...  

Abstract Background Age-related diminished ovarian reserve (AR-DOR) reduced the quality of oocytes, resulting in decreased female fertility. Aging is tightly related to abnormal distribution and function of mitochondria, while mitophagy is a major process to maintain normal quality and quantity of mitochondria in cells, especially in oocytes which containing a large number of mitochondria to meet the demand of energy production during oocyte maturation and subsequent embryonic development. Ampk/FoxO3a signaling is crucial in the regulation of mitophagy. It is reported mesenchymal stem cells (MSCs) can improve ovarian function. Here we aim to explore if human amnion-derived mesenchymal stem cells (hAMSCs) are effective in improving ovarian function in AR-DOR mice and whether Ampk/FoxO3a signaling is involved. Methods The AR-DOR model mice were established by 32-week-old mice with 3–8 litters, significantly low serum sex hormone levels and follicle counts. The old mice were divided into 5 treatment groups: normal saline (NS, control), 1% human serum albumin (HSA, resolver), low dose (LD, 5.0 × 106cells/kg), middle dose (MD, 7.5 × 106cells/kg), and high dose (HD, 10.0 × 106cells/kg). The prepared hAMSCs were injected through tail vein. Serum sex hormone level, follicle counts, fertilization rate, gestation rate, little size, apoptosis of granulosa and stromal cells, expression level of Sod2, Ampk, and ratio of phosphorylated FoxO3a to total FoxO3a in ovaries were examined. Results Our results show that after hAMSC transplantation, the ovarian function in AR-DOR mice was significantly improved, meanwhile the apoptosis of granulosa and stromal cells in the ovaries was significantly repressed, the expression level of Ampk and the ratio of phosphorylated FoxO3a to total FoxO3a both were significantly increased, meanwhile increased Sod2 expression was also observed. Conclusion Our results demonstrate hAMSC transplantation via tail-injection can improve ovarian function of AR-DOR mice through Ampk/FoxO3a signaling pathway.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Daniela Frasca ◽  
Maria Romero ◽  
Denisse Garcia ◽  
Alain Diaz ◽  
Bonnie B. Blomberg

Abstract Background Aging is associated with increased intrinsic B cell inflammation, decreased protective antibody responses and increased autoimmune antibody responses. The effects of aging on the metabolic phenotype of B cells and on the metabolic programs that lead to the secretion of protective versus autoimmune antibodies are not known. Methods Splenic B cells and the major splenic B cell subsets, Follicular (FO) and Age-associated B cells (ABCs), were isolated from the spleens of young and old mice and left unstimulated. The RNA was collected to measure the expression of markers associated with intrinsic inflammation and autoimmune antibody production by qPCR. B cells and B cell subsets were also stimulated with CpG and supernatants collected after 7 days to measure autoimmune IgG secretion by ELISA. Metabolic measures (oxygen consumption rate, extracellular acidification rate and glucose uptake) were performed using a Seahorse XFp extracellular flux analyzer. Results Results have identified the subset of ABCs, whose frequencies and numbers increase with age and represent the most pro-inflammatory B cell subset, as the cell type mainly if not exclusively responsible for the expression of inflammatory markers and for the secretion of autoimmune antibodies in the spleen of old mice. Hyper-inflammatory ABCs from old mice are also hyper-metabolic, as compared to those from young mice and to the subset of FO B cells, a feature needed not only to support their higher expression of RNA for inflammatory markers but also their higher autoimmune antibody secretion. Conclusions These results identify a relationship between intrinsic inflammation, metabolism and autoimmune B cells and suggest possible ways to understand cellular mechanisms that lead to the generation of pathogenic B cells, that are hyper-inflammatory and hyper-metabolic, and secrete IgG antibodies with autoimmune specificities.


2021 ◽  
Vol 7 (21) ◽  
pp. eabe4601
Author(s):  
Sandro Da Mesquita ◽  
Jasmin Herz ◽  
Morgan Wall ◽  
Taitea Dykstra ◽  
Kalil Alves de Lima ◽  
...  

Aging leads to a progressive deterioration of meningeal lymphatics and peripheral immunity, which may accelerate cognitive decline. We hypothesized that an age-related reduction in C-C chemokine receptor type 7 (CCR7)–dependent egress of immune cells through the lymphatic vasculature mediates some aspects of brain aging and potentially exacerbates cognitive decline and Alzheimer’s disease–like brain β-amyloid (Aβ) pathology. We report a reduction in CCR7 expression by meningeal T cells in old mice that is linked to increased effector and regulatory T cells. Hematopoietic CCR7 deficiency mimicked the aging-associated changes in meningeal T cells and led to reduced glymphatic influx and cognitive impairment. Deletion of CCR7 in 5xFAD transgenic mice resulted in deleterious neurovascular and microglial activation, along with increased Aβ deposition in the brain. Treating old mice with anti-CD25 antibodies alleviated the exacerbated meningeal regulatory T cell response and improved cognitive function, highlighting the therapeutic potential of modulating meningeal immunity to fine-tune brain function in aging and in neurodegenerative diseases.


2008 ◽  
Vol 294 (4) ◽  
pp. H1562-H1570 ◽  
Author(s):  
Hélène Bulckaen ◽  
Gaétan Prévost ◽  
Eric Boulanger ◽  
Géraldine Robitaille ◽  
Valérie Roquet ◽  
...  

The age-related impairment of endothelium-dependent vasodilatation contributes to increased cardiovascular risk in the elderly. For primary and secondary prevention, aspirin can reduce the incidence of cardiovascular events in this patient population. The present work evaluated the effect of low-dose aspirin on age-related endothelial dysfunction in C57B/J6 aging mice and investigated its protective antioxidative effect. Age-related endothelial dysfunction was assessed by the response to acetylcholine of phenylephrine-induced precontracted aortic segments isolated from 12-, 36-, 60-, and 84-wk-old mice. The effect of low-dose aspirin was examined in mice presenting a decrease in endothelial-dependent relaxation (EDR). The effects of age and aspirin treatment on structural changes were determined in mouse aortic sections. The effect of aspirin on the oxidative stress markers malondialdehyde and 8-hydroxy-2′-deoxyguanosine (8-OhdG) was also quantified. Compared with that of 12-wk-old mice, the EDR was significantly reduced in 60- and 84-wk-old mice ( P < 0.05); 68-wk-old mice treated with aspirin displayed a higher EDR compared with control mice of the same age (83.9 ± 4 vs. 66.3 ± 5%; P < 0.05). Aspirin treatment decreased 8-OHdG levels ( P < 0.05), but no significant effect on intima/media thickness ratio was observed. The protective effect of aspirin was not observed when treatment was initiated in older mice (96 wk of age). It was found that low-dose aspirin is able to prevent age-related endothelial dysfunction in aging mice. However, the absence of this effect in the older age groups demonstrates that treatment should be initiated early on. The underlying mechanism may involve the protective effect of aspirin against oxidative stress.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 856
Author(s):  
Eun Young Kim ◽  
Stuart E. Dryer

Canonical transient receptor potential 6 (TRPC6) channels have been implicated in familial and acquired forms of focal and segmental glomerulosclerosis (FSGS) in patients and animal models, as well as in renal fibrosis following ureteral obstruction in mice. Aging also evokes declines in renal function owing to effects on almost every renal compartment in humans and rodents. Here, we have examined the role of TRPC6 in driving inflammation and fibrosis during aging in Sprague-Dawley rats. This was assessed in rats with non-functional TRPC6 channels owing to CRISPR-Cas9 deletion of a portion of the ankyrin repeat domain required for the assembly of functional TRPC6 channels (Trpc6del/del rats). Wild-type littermates (Trpc6wt/wt rats) were used as controls. Animals were evaluated at 2 months and 12 months of age. There was no sign of kidney disease at 2 months of age, regardless of genotype. However, by 12 months of age, all rats examined showed declines in renal function associated with albuminuria, azotemia and increased urine excretion of β2–microglobulin, a marker for proximal tubule pathology. These changes were equally severe in Trpc6wt/wt and Trpc6del/del rats. We also observed age-related increases in renal cortical expression of markers of fibrosis (α-smooth muscle actin and vimentin) and inflammation (NLRP3 and pro-IL−1β), and there was no detectable protective effect of TRPC6 inactivation. Tubulointerstitial fibrosis assessed from histology also appeared equally severe in Trpc6wt/wt and Trpc6del/del rats. By contrast, glomerular pathology, blindly scored from histological sections, suggested a significant protective effect of TRPC6 inactivation, but only within the glomerular compartment.


2005 ◽  
Vol 84 (5) ◽  
pp. 1462-1469 ◽  
Author(s):  
Carmen L. Pastor ◽  
Vien H. Vanderhoof ◽  
Lony C.-L. Lim ◽  
Karim A. Calis ◽  
Ahalya Premkumar ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie K. Lagerquist ◽  
Karin L. Gustafsson ◽  
Petra Henning ◽  
Helen Farman ◽  
Jianyao Wu ◽  
...  

AbstractObesity has previously been thought to protect bone since high body weight and body mass index are associated with high bone mass. However, some more recent studies suggest that increased adiposity negatively impacts bone mass. Here, we aimed to test whether acute loss of adipose tissue, via adipocyte apoptosis, alters bone mass in age-related obese mice. Adipocyte apoptosis was induced in obese male FAT-ATTAC mice through AP20187 dimerizer-mediated activation of caspase 8 selectively in adipocytes. In a short-term experiment, dimerizer was administered to 5.5 month-old mice that were terminated 2 weeks later. At termination, the total fat mass weighed 58% less in dimerizer-treated mice compared with vehicle-treated controls, but bone mass did not differ. To allow for the detection of long-term effects, we used 9-month-old mice that were terminated six weeks after dimerizer administration. In this experiment, the total fat mass weighed less (− 68%) in the dimerizer-treated mice than in the controls, yet neither bone mass nor biomechanical properties differed between groups. Our findings show that adipose tissue loss, despite the reduced mechanical loading, does not affect bone in age-related obese mice. Future studies are needed to test whether adipose tissue loss is beneficial during more severe obesity.


2021 ◽  
Author(s):  
Christine Maria Krammer ◽  
Bishan Yang ◽  
Sabrina Reichl ◽  
Verena Bolini ◽  
Corinna Schulte ◽  
...  

Atherosclerosis is a lipid-triggered chronic inflammatory condition of our arteries and the main underlying pathology of myocardial infarction and stroke. Pathogenesis is age-dependent, but the mechanistic links between disease progression, age, and atherogenic cytokines and chemokines are incompletely understood. Here, we studied the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) in atherogenic Apoe-/- mice across different stages of aging and cholesterol-rich high-fat diet (HFD). MIF promotes atherosclerosis by mediating atherogenic monocyte and T-cell recruitment, amplifying lesional inflammation, and suppressing atheroprotective B-cell responses. However, age-related links between atherogenesis and MIF and its role in advanced atherosclerosis in aged mice have not been systematically explored. We compared effects of global Mif-gene deficiency in 30-, 42-, and 48-week-old Apoe-/- mice on HFD for 24, 36, or 42 weeks, respectively, and in 52-week-old mice on a 6-week HFD. While a regio-specific atheroprotective phenotype of Mif-deficiency was observed in the 30/24-week-old group, atheroprotection was not detected in the 48/42- and 52/6-week-old groups, suggesting that atheroprotection afforded by global Mif-gene deletion differs across aging stages and atherogenic diet duration. We identify a combination of mechanisms that could explain this phenotype: i) Mif-deficiency promotes lesional Trem2+ macrophage numbers in younger but not aged mice; ii) Mif-deficiency favors formation of lymphocyte-rich stage-I/II ATLOs in younger mice but ATLO numbers equalize with those in Apoe-/- controls in the older mice; and iii) plasma anti-oxLDL-IgM antibody levels are decreased in aged Mif-deficient mice. Of note, these three markers (Trem2+ macrophages, ATLOs, anti-oxLDL-IgM antibodies) have been previously linked to atheroprotection. Together, our study thus suggests that regio-specific atheroprotection due to global Mif-gene deficiency in atherogenic Apoe-/- mice is lost upon advanced aging and identifies mechanisms that could explain this phenotype shift. These observations may have implications for translational MIF-directed strategies.


Author(s):  
L. I. Merkusheva ◽  
N. K. Runikhina ◽  
O. N. Tkacheva

Individuals age >65 years old are the fastest expanding population demographic throughout the developed world. Consequently, more aged patients than before are receiving diagnoses of impaired renal function and nephrosclerosis. In this review, we examine these features of the aged kidney and explore the various validated and putative pathways contributing to the changes observed with aging. Senescence or normal physiologic aging portrays the expected age-related changes in the kidney as compared to chronic kidney disease (CKD) in some individuals. The microanatomical structural changes of the kidney with older age include a decreased number of functional glomeruli from an increased prevalence of nephrosclerosis (arteriosclerosis, glomerulosclerosis, and tubular atrophy with interstitialfibrosis), and to some extent, compensatory hypertrophy of remaining nephrons. Among the macroanatomical structural changes, older age associates with smaller cortical volume. There is reason to be concerned that the elderly are being misdiagnosed with CKD. In addition to the structural changes in the kidney associated with aging, physiological changes in renal function are also found in older adults, such as decreased glomerular filtration rate, vascular dysautonomia, altered tubular handling of creatinine, reduction in sodium reabsorption and potassium secretion, and diminished renal reserve. These alterations make aged individuals susceptible to the development of clinical conditions in response to usual stimuli that would otherwise be compensated for in younger individuals, including acute kidney injury, volume depletion and overload, disorders of serum sodium and potassium concentration, and toxic reactions to water -soluble drugs excreted by the kidneys. Additionally, the preservation with aging of a normal urinalysis, normal serum urea and creatinine values, erythropoietin synthesis, and normal phosphorus, calcium and magnesium tubular handling distinguishes decreased GFR due to normal aging from that due to chronic kidney disease.


Sign in / Sign up

Export Citation Format

Share Document