scholarly journals Fabrication of Protein-Coated Titanium Dioxide Nanoparticles for Cellular Uptake Fluorescence Imaging and Treatment of Colorectal Cancer

Author(s):  
Li Zhang ◽  
Deping Wang ◽  
Honglu Yu

Abstract We effectively fabricated Titanium dioxide nanoparticles that were protein-coated. Bovine serum albumin (BSA), lysozyme proteins, zein, and collagen have been used to coat titanium dioxide-aryl nanoparticles of the form TiO2-NPs. However, in both cases, no catalysts or other stabilising agents were used. These images of TiO2-NPs fabricated using the green method show high crystallinity. It is a malignant colorectal tumour with dysfunctional cellular processes that cause colorectal cancer cells. It is hoped that studies employing SW1417 cells would give mechanistic ideas on the specifics of the amplification in cancers. This was done by flow cytometry utilising and laser confocal fluorescence microscopy (LCFM) on the SW1417 colorectal cell line. Of the protein-coated Titanium dioxide nanoparticles fabricated green methods, BSA@TiO2-NPs were the most readily absorbed. Of all TiO2-NPs, lysozyme@TiO2-NPs fabricated by the chemical reduction technique were the most effectively internalised by SW1417 cells out of TiO2-NPs types.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4090
Author(s):  
Morteza Sheikhalipour ◽  
Behrooz Esmaielpour ◽  
Gholamreza Gohari ◽  
Maryam Haghighi ◽  
Hessam Jafari ◽  
...  

High salt levels are one of the significant and major limiting factors on crop yield and productivity. Out of the available attempts made against high salt levels, engineered nanoparticles (NPs) have been widely employed and considered as effective strategies in this regard. Of these NPs, titanium dioxide nanoparticles (TiO2 NPs) and selenium functionalized using chitosan nanoparticles (Cs–Se NPs) were applied for a quite number of plants, but their potential roles for alleviating the adverse effects of salinity on stevia remains unclear. Stevia (Stevia rebaudiana Bertoni) is one of the reputed medicinal plants due to their diterpenoid steviol glycosides (stevioside and rebaudioside A). For this reason, the current study was designed to investigate the potential of TiO2 NPs (0, 100 and 200 mg L−1) and Cs–Se NPs (0, 10 and 20 mg L−1) to alleviate salt stress (0, 50 and 100 mM NaCl) in stevia. The findings of the study revealed that salinity decreased the growth and photosynthetic traits but resulted in substantial cell damage through increasing H2O2 and MDA content, as well as electrolyte leakage (EL). However, the application of TiO2 NPs (100 mg L−1) and Cs–Se NPs (20 mg L−1) increased the growth, photosynthetic performance and activity of antioxidant enzymes, and decreased the contents of H2O2, MDA and EL under the saline conditions. In addition to the enhanced growth and physiological performance of the plant, the essential oil content was also increased with the treatments of TiO2 (100 mg L−1) and Cs–Se NPs (20 mg L−1). In addition, the tested NPs treatments increased the concentration of stevioside (in the non-saline condition and under salinity stress) and rebaudioside A (under the salinity conditions) in stevia plants. Overall, the current findings suggest that especially 100 mg L−1 TiO2 NPs and 20 mg L−1 Cs–Se could be considered as promising agents in combating high levels of salinity in the case of stevia.


Nanoscale ◽  
2020 ◽  
Author(s):  
Yanjun Gao ◽  
Tingyu Li ◽  
Shuming Duan ◽  
Lizhi Lv ◽  
Yuan Li ◽  
...  

Titanium dioxide nanoparticles (TiO2-NPs) is widely applicated as additives in foods for its excellent whitening and brightening capability. Although the toxicity and antibacterial activity of TiO2-NPs has been extensively studied,...


Author(s):  
Chijiang Gu ◽  
Mingyuan Zhang ◽  
Weiliang Sun ◽  
Changzheng Dong

Colorectal cancer (CRC) is a common clinical cancer that remains incurable in most cases. miRNAs are reported to play a part in the development of various tumors. In the present study, we found that miR-324-5p was downregulated in CRC cells, while ELAV (embryonic lethal, abnormal vision, Drosophila)-like protein 1 (ELAVL1) showed a higher expression. miR-324-5p transfection significantly inhibited the proliferation as well as invasion in both SW620 and SW480 cells. miR-324-5p mimic transfection markedly decreased the expression of ELAVL1. Luciferase reporter gene assay confirmed that ELAVL1 is a direct target of miR-324-5p. Furthermore, cancer invasion factors uPA, uPAR, and MMP-9 were found to drop significantly in miR-324-5p-transfected groups. To conclude, our findings indicate that miR-324-5p may play a suppressive role in colorectal cell viability and invasion, at least in part, through directly targeting ELAVL1. Therefore, miR-234-5p might function as a promising candidate for CRC treatment and deserves deeper research.


Author(s):  
Wei Zhang ◽  
Jinghua Long ◽  
Jianmin Geng ◽  
Jie Li ◽  
Zhongyi Wei

The impact of engineered nanoparticles (ENPs) on the migration and toxicity of coexisting pollutants is still unclear, especially in soil media. This study aims to evaluate the impact of titanium dioxide nanoparticles (TiO2 NPs) on the phytotoxicity of cadmium (Cd) to Oryza sativa L., and the migration of cadmium (Cd) in the soil-rice system. Three different Cd stress groups (C1 group: 1.0 mg kg−1, C2 group: 2.5 mg kg−1 and C3 group: 5.0 mg kg−1) were set in the pot experiment, and the target concentration of TiO2 NPs in each group were 0 mg kg−1 (T0), 50 mg kg−1 (T1), 100 mg kg−1 (T2) and 500 mg kg−1 (T3). Plant height and biomass decreased with the increasing of Cd content in paddy soil. TiO2 NPs could lower the phytotoxicity of Cd in terms of the changes in the morphological and biochemical characteristics, especially in the tillering and booting stage. In the tillering stage, TiO2 NPs addition caused a significant increase in plant height, biomass and the total chlorophyll content in the leaves of Oryza saliva L. In the booting stage, TiO2 NPs addition caused a 15% to 32% and 24% to 48% reduction of malondialdehyde (MDA) content for the C2 and C3 group, respectively, compared to that of the respective control treatment (T0). TiO2-NPs addition reduced the activity of peroxidase (POD) in the leaves in the booting and heading stage, and the activity of catalase (CAT) in the tillering stage. In the C1 and C2 group, the grain Cd content in the 100 and 500 mg kg−1 TiO2 NPs treatments reached 0.47–0.84 mg kg−1, obviously higher than that of the treatment without TiO2 NPs (0.27–0.32 mg kg−1), suggesting that TiO2-NPs could promote Cd migration in the soil-rice system.


2020 ◽  
Vol 10 (3) ◽  
pp. 365-370
Author(s):  
Qiupeng Du ◽  
Na Du ◽  
Chenchen Zhu ◽  
Qingqing Shang ◽  
Haiyan Mao ◽  
...  

Objective: To assess whether miR-203 regulates DJ-1 expression, affects colorectal cancer cells through PTEN-PI3K/AKT signaling. Methods: Colorectal cancer (CRC) tissues and adjacent tissues were collected followed by analysis of the level of miR-203, DJ-1 and PTEN. miR-203 and DJ-1 level was measured in HCT116, SW480 and normal colorectal cell NCM460. miR-203 mimic or miR-NC was transfected into HCT116 or SW480 cells followed by measuring the level of miR-203, DJ-1, PTEN, p-AKT as well as cell apoptosis and proliferation. Results: Compared with tumor adjacent tissues, tumor tissues showed significantly lower level of miR-203 and PTEN, and higher level of DJ-1. There is a targeted relationship between miR-203 and DJ-1. Compared with NCM460 cell, HCT116 and SW480 cells displayed significantly lower miR-203 level and higher DJ-1 expression. miR-203 mimic significantly reduced DJ-1 and p-AKT level, increased PTEN expression, cell apoptosis and inhibited cell proliferation. Conclusion: Lower miR-203 and higher DJ-1 level is found in CRC patients. Upregulation of miR-203 inhibits DJ-1 expression, increases PTEN expression, impairs PI3K/AKT signaling, inhibits CRC cell proliferation and promotes apoptosis.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1955 ◽  
Author(s):  
Elizabeth Huerta-García ◽  
Iván Zepeda-Quiroz ◽  
Helen Sánchez-Barrera ◽  
Zaira Colín-Val ◽  
Ernesto Alfaro-Moreno ◽  
...  

Titanium dioxide nanoparticles (TiO2 NPs) are widely used in industry and daily life. TiO2 NPs can penetrate into the body, translocate from the lungs into the circulation and come into contact with cardiac cells. In this work, we evaluated the toxicity of TiO2 NPs on H9c2 rat cardiomyoblasts. Internalization of TiO2 NPs and their effect on cell proliferation, viability, oxidative stress and cell death were assessed, as well as cell cycle alterations. Cellular uptake of TiO2 NPs reduced metabolic activity and cell proliferation and increased oxidative stress by 19-fold measured as H2DCFDA oxidation. TiO2 NPs disrupted the plasmatic membrane integrity and decreased the mitochondrial membrane potential. These cytotoxic effects were related with changes in the distribution of cell cycle phases resulting in necrotic death and autophagy. These findings suggest that TiO2 NPs exposure represents a potential health risk, particularly in the development of cardiovascular diseases via oxidative stress and cell death.


Author(s):  
Daniel Ziental ◽  
Beata Czarczynska-Goslinska ◽  
Dariusz T. Mlynarczyk ◽  
Arleta Glowacka-Sobotta ◽  
Beata Stanisz ◽  
...  

Metallic nanoparticles (NPs), among polymeric NPs, liposomes, micelles, quantum dots, dendrimers, or fullerenes, are becoming more and more important due to their potential use in the novel medical therapies. Titanium dioxide (titanium(IV) oxide, titania, TiO2) is an inorganic compound that owes its recent rise in scientific interest to photoactivity. After the illumination in aqueous media with UV light, TiO2 produces an array of reactive oxygen species (ROS). The capability to produce ROS and thus induce cell death has found application in the photodynamic therapy (PDT) for the treatment of a wide range of maladies, from psoriasis to cancer. Titanium dioxide NPs were studied as photosensitizing agents in the treatment of malignant tumors as well as in photodynamic inactivation of antibiotic-resistant bacteria. Both TiO2 NPs themselves, as well as their composites with other molecules, can be successfully used as photosensitizers in PDT. Moreover, various organic compounds can be grafted on TiO2 NPs, leading to hybrid materials. These nanostructures can reveal increased light absorption allowing their further use in targeted therapy in medicine. In order to improve efficient anticancer therapy, many approaches utilizing titanium dioxide were tested. The most significant studies are discussed in this review.


Author(s):  
Clarisse Liné ◽  
Juan Reyes-Herrera ◽  
Mansi Bakshi ◽  
Mohammad Wazne ◽  
Valentin Costa ◽  
...  

Carbon nanotubes (CNTs) and titanium dioxide nanoparticles (TiO2-NPs) are among the most used nanomaterials (NMs). However, their impacts especially on the terrestrial ecosystems and on plants are still controversial. Apart...


Sign in / Sign up

Export Citation Format

Share Document