scholarly journals NFE2L1-mediated proteasome function protects from ferroptosis

2021 ◽  
Author(s):  
Stefan Kotschi ◽  
Anna Jung ◽  
Nienke Willemsen ◽  
Anahita Ofoghi ◽  
Bettina Proneth ◽  
...  

Ferroptosis continues to emerge as a novel modality of cell death with important therapeutic implications for a variety of diseases, most notably cancer and degenerative diseases. While susceptibility, initiation, and execution of ferroptosis have been linked to reprogramming of cellular lipid metabolism, imbalances in iron-redox homeostasis, and aberrant mitochondrial respiration, the detailed mechanisms of ferroptosis are still insufficiently well understood. Here we show that diminished proteasome function is a new mechanistic feature of ferroptosis. The transcription factor nuclear factor erythroid-2, like-1 (NFE2L1) protects from ferroptosis by sustaining proteasomal activity. In cellular systems, loss of NFE2L1 reduced cellular viability after the induction of both chemically and genetically induced ferroptosis, which was linked to the regulation of proteasomal activity under these conditions. Importantly, this was reproduced in a Sedaghatian-type Spondylometaphyseal Dysplasia (SSMD) patient-derived cell line carrying mutated glutathione peroxidase-4 (GPX4), a critical regulator of ferroptosis. Also, reduced proteasomal activity was associated with ferroptosis in Gpx4-deficient mice. In a mouse model for genetic Nfe2l1 deficiency, we observed brown adipose tissue (BAT) involution, hyperubiquitination of ferroptosis regulators, including the GPX4 pathway, and other hallmarks of ferroptosis. Our data highlight the relevance of the NFE2L1-proteasome pathway in ferroptosis. Manipulation of NFE2L1 activity might enhance ferroptosis-inducing cancer therapies as well as protect from aberrant ferroptosis in neurodegeneration, general metabolism, and beyond.

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 419
Author(s):  
Yohei Sanada ◽  
Sho Joseph Ozaki Tan ◽  
Nobuo Adachi ◽  
Shigeru Miyaki

Osteoarthritis (OA) is a common aging-associated disease that clinically manifests as joint pain, mobility limitations, and compromised quality of life. Today, OA treatment is limited to pain management and joint arthroplasty at the later stages of disease progression. OA pathogenesis is predominantly mediated by oxidative damage to joint cartilage extracellular matrix and local cells such as chondrocytes, osteoclasts, osteoblasts, and synovial fibroblasts. Under normal conditions, cells prevent the accumulation of reactive oxygen species (ROS) under oxidatively stressful conditions through their adaptive cytoprotective mechanisms. Heme oxygenase-1 (HO-1) is an iron-dependent cytoprotective enzyme that functions as the inducible form of HO. HO-1 and its metabolites carbon monoxide and biliverdin contribute towards the maintenance of redox homeostasis. HO-1 expression is primarily regulated at the transcriptional level through transcriptional factor nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), specificity protein 1 (Sp1), transcriptional repressor BTB-and-CNC homology 1 (Bach1), and epigenetic regulation. Several studies report that HO-1 expression can be regulated using various antioxidative factors and chemical compounds, suggesting therapeutic implications in OA pathogenesis as well as in the wider context of joint disease. Here, we review the protective role of HO-1 in OA with a focus on the regulatory mechanisms that mediate HO-1 activity.


2019 ◽  
Vol 3 (1) ◽  
pp. 105-130 ◽  
Author(s):  
Tyler G. Demarest ◽  
Mansi Babbar ◽  
Mustafa N. Okur ◽  
Xiuli Dan ◽  
Deborah L. Croteau ◽  
...  

Aging is a major risk factor for many types of cancer, and the molecular mechanisms implicated in aging, progeria syndromes, and cancer pathogenesis display considerable similarities. Maintaining redox homeostasis, efficient signal transduction, and mitochondrial metabolism is essential for genome integrity and for preventing progression to cellular senescence or tumorigenesis. NAD+is a central signaling molecule involved in these and other cellular processes implicated in age-related diseases and cancer. Growing evidence implicates NAD+decline as a major feature of accelerated aging progeria syndromes and normal aging. Administration of NAD+precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) offer promising therapeutic strategies to improve health, progeria comorbidities, and cancer therapies. This review summarizes insights from the study of aging and progeria syndromes and discusses the implications and therapeutic potential of the underlying molecular mechanisms involved in aging and how they may contribute to tumorigenesis.


2022 ◽  
Vol 15 (1) ◽  
pp. 60
Author(s):  
Helenita C. Quadros ◽  
Mariana C. B. Silva ◽  
Diogo R. M. Moreira

Plasmodium has evolved to regulate the levels and oxidative states of iron protoporphyrin IX (Fe-PPIX). Antimalarial endoperoxides such as 1,2,4-trioxane artemisinin and 1,2,4-trioxolane arterolane undergo a bioreductive activation step mediated by heme (FeII-PPIX) but not by hematin (FeIII-PPIX), leading to the generation of a radical species. This can alkylate proteins vital for parasite survival and alkylate heme into hematin–drug adducts. Heme alkylation is abundant and accompanied by interconversion from the ferrous to the ferric state, which may induce an imbalance in the iron redox homeostasis. In addition to this, hematin–artemisinin adducts antagonize the spontaneous biomineralization of hematin into hemozoin crystals, differing strikingly from artemisinins, which do not directly suppress hematin biomineralization. These hematin–drug adducts, despite being devoid of the peroxide bond required for radical-induced alkylation, are powerful antiplasmodial agents. This review addresses our current understanding of Fe-PPIX as a bioreductive activator and molecular target. A compelling pharmacological model is that by alkylating heme, endoperoxide drugs can cause an imbalance in the iron homeostasis and that the hematin–drug adducts formed have strong cytocidal effects by possibly reproducing some of the toxifying effects of free Fe-PPIX. The antiplasmodial phenotype and the mode of action of hematin–drug adducts open new possibilities for reconciliating the mechanism of endoperoxide drugs and for malaria intervention.


2021 ◽  
Author(s):  
Raghbendra Kumar Dutta ◽  
Joon No Lee ◽  
Yunash Maharjan ◽  
Channy Park ◽  
Seong-Kyu Choe ◽  
...  

Abstract Background Fatty acids (FA) derived from adipose tissue and liver serve as the main fuel in thermogenesis of brown adipose tissue (BAT). Catalase, a peroxisomal enzyme, plays an important role in maintaining intracellular redox homeostasis by decomposing hydrogen peroxide to either water or oxygen that oxidize and provide fuel for cellular metabolism. Although the antioxidant enzymatic activity of catalase is well known, its role in the metabolism and maintenance of energy homeostasis has not yet been revealed. The present study investigated the role of catalase in lipid metabolism and thermogenesis during nutrient deprivation in catalase-knockout (KO) mice. Results We found that hepatic triglyceride accumulation in KO mice decreased during sustained fasting due to lipolysis through reactive oxygen species (ROS) generation in adipocytes. Furthermore, the free FA released from lipolysis were shuttled to BAT through the activation of CD36 and catabolized by lipoprotein lipase in KO mice during sustained fasting. Although the exact mechanism for the activation of the FA receptor enzyme is still unclear, we found that ROS generation in adipocytes mediated the shuttling of FA to BAT. Conclusions Taken together, our findings uncover the novel role of catalase in lipid metabolism and thermogenesis in BAT, which may be useful in understanding metabolic dysfunction.


Author(s):  
Mengxiong Wang ◽  
Laura D. Attardi

TP53, encoding the p53 transcription factor, is the most frequently mutated tumor suppressor gene across all human cancer types. While p53 has long been appreciated to induce antiproliferative cell cycle arrest, apoptosis, and senescence programs in response to diverse stress signals, various studies in recent years have revealed additional important functions for p53 that likely also contribute to tumor suppression, including roles in regulating tumor metabolism, ferroptosis, signaling in the tumor microenvironment, and stem cell self-renewal/differentiation. Not only does p53 loss or mutation cause cancer, but hyperactive p53 also drives various pathologies, including developmental phenotypes, premature aging, neurodegeneration, and side effects of cancer therapies. These findings underscore the importance of balanced p53 activity and influence our thinking of how to best develop cancer therapies based on modulating the p53 pathway. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 247-247 ◽  
Author(s):  
Giada Bianchi ◽  
Laura Oliva ◽  
Paolo Cascio ◽  
Niccolo’ Pengo ◽  
Andrea Orsi ◽  
...  

Abstract Proteasome inhibitors (PI) proved to be extremely effective against different types of cancer, particularly against Multiple Myeloma (MM), a frequent and still incurable plasma cell malignancy. Phase II clinical trials showed that more than 50% of MM patients fail to respond to bortezomib, the only PI currently approved for clinical use. However, the mechanisms of action and bases of individual susceptibility to PI remain largely unclear, with no reliable predictor of response identified so far. Recent evidences linking proteasome activity and Ig synthesis to susceptibility to PI suggest that the exquisite sensitivity of MM cells (MMC) to PI might be explained by an imbalance between the efficiency of the ubiquitin (Ub)-proteasome pathway and the demand for proteasome-mediated degradation. We set out to explore this hypothesis both in vitro and ex vivo. To achieve this aim, we employed human MM cell lines characterized by differential apoptotic sensitivity to PI (U266 and RPMI8226, fairly resistant cell lines, versus MM.1S, an extremely sensitive one) and primary, patient derived MMC. In MM cell lines, we found that high apoptotic sensitivity to PI is associated with lower expression of active proteasomes (as assessed by decreased expression of cleaved catalytic subunits and enzymatic assays with fluorogenic substrates in cell extracts), together with higher proteasomal workload (demonstrated by higher proteasome-dependent loss of TCA-insoluble radioactivity in pulse-chase assays). Indeed, MM.1S cells displayed 2–3 times lower proteasomal activity as compared to the more resistant U266 and RPMI8226 cells, both on a per cell basis and upon normalization by protein content. Together with the reduced proteasome capacity, MM.1S cells showed a consistently higher production of client proteins for the Ub-proteasome pathway. Such an increased load appears to be the consequence of a higher production of Rapidly Degraded Polypeptides (RDP). These are newly synthesized proteins which are quickly redirected to proteasome-mediated degradation. The imbalance between proteasomal load and capacity results in remarkable accumulation of poly-Ub proteins at the expense of free Ub (as established by both western blotting and immunofluorescence), unveiling basal proteasome stress in PI-sensitive MMC. In order to establish a causal link between proteasome stress and sensitivity to PI, we pharmacologically modulated either proteasome expression or workload and successfully altered PI-induced apoptosis. As predicted, increasing proteasome workload by means of ER stressors (e.g. tunicamycin, thapsigargin, brefeldin A) dramatically enhances susceptibility to PI, while a raise in proteasomal activity (achieved by exploiting the proteasome stress response, an adaptive mechanism by which mammalian cells induce proteasome biogenesis in response to either decreased proteasome function or increased proteasomal demand), confers marked resistance to PI-induced apoptosis. Having established cause-effect relationships between determinants of proteasome stress and vulnerability to PI in vitro, we then asked if our model could be used to predict responsiveness to PI in MM patients. In keeping with this hypothesis, intracellular immunostaining in primary, patient-derived MMC reveals that accumulation of poly-Ub proteins specifically hallmarks neoplastic plasma cells, indicating that the cancer compartment in MM patients suffers from proteasome stress. Moreover, poly-Ub levels positively correlate with Ig content, both intra- and inter-patient, suggesting a direct effect of Ig synthesis and/or retention on proteasome functional load. Finally, overall proteasome activity of primary MMC inversely correlates with the intrinsic apoptotic sensitivity to PI as assessed ex vivo, providing a rationale for the assessment of this parameter as a potential predictor of the in vivo response to bortezomib or other PI. Altogether, our data indicate that the balance between proteasome workload and degradative capacity represents a critical determinant of apoptotic sensitivity of MMC to PI, providing both a novel predictive tool of potential prognostic value and the framework for novel combination therapies aimed at exacerbating proteasome stress in MM.


2019 ◽  
Vol 81 (1) ◽  
pp. 483-503 ◽  
Author(s):  
Xuri Li ◽  
Anil Kumar ◽  
Peter Carmeliet

Endothelial cell (EC) metabolism is important for health and disease. Metabolic pathways, such as glycolysis, fatty acid oxidation, and amino acid metabolism, determine vasculature formation. These metabolic pathways have different roles in securing the production of energy and biomass and the maintenance of redox homeostasis in vascular migratory tip cells, proliferating stalk cells, and quiescent phalanx cells, respectively. Emerging evidence demonstrates that perturbation of EC metabolism results in EC dysfunction and vascular pathologies. Here, we summarize recent insights into EC metabolic pathways and their deregulation in vascular diseases. We further discuss the therapeutic implications of targeting EC metabolism in various pathologies.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 773
Author(s):  
Maribel Escoll ◽  
Diego Lastra ◽  
Natalia Robledinos-Antón ◽  
Francisco Wandosell ◽  
Inés María Antón ◽  
...  

Due to their high metabolic rate, tumor cells produce exacerbated levels of reactive oxygen species that need to be under control. Wiskott–Aldrich syndrome protein (WASP)-interacting protein (WIP) is a scaffold protein with multiple yet poorly understood functions that participates in tumor progression and promotes cancer cell survival. However, its participation in the control of oxidative stress has not been addressed yet. We show that WIP depletion increases the levels of reactive oxygen species and reduces the levels of transcription factor NRF2, the master regulator of redox homeostasis. We found that WIP stabilizes NRF2 by restraining the activity of its main NRF2 repressor, the E3 ligase adapter KEAP1, because the overexpression of a NRF2ΔETGE mutant that is resistant to targeted proteasome degradation by KEAP1 or the knock-down of KEAP1 maintains NRF2 levels in the absence of WIP. Mechanistically, we show that the increased KEAP1 activity in WIP-depleted cells is not due to the protection of KEAP1 from autophagic degradation, but is dependent on the organization of the Actin cytoskeleton, probably through binding between KEAP1 and F-Actin. Our study provides a new role of WIP in maintaining the oxidant tolerance of cancer cells that may have therapeutic implications.


2021 ◽  
Vol 12 ◽  
Author(s):  
Damien Lagarde ◽  
Yannick Jeanson ◽  
Jean-Charles Portais ◽  
Anne Galinier ◽  
Isabelle Ader ◽  
...  

Lactate, a metabolite produced when the glycolytic flux exceeds mitochondrial oxidative capacities, is now viewed as a critical regulator of metabolism by acting as both a carbon and electron carrier and a signaling molecule between cells and tissues. In recent years, increasing evidence report its key role in white, beige, and brown adipose tissue biology, and highlights new mechanisms by which lactate participates in the maintenance of whole-body energy homeostasis. Lactate displays a wide range of biological effects in adipose cells not only through its binding to the membrane receptor but also through its transport and the subsequent effect on intracellular metabolism notably on redox balance. This study explores how lactate regulates adipocyte metabolism and plasticity by balancing intracellular redox state and by regulating specific signaling pathways. We also emphasized the contribution of adipose tissues to the regulation of systemic lactate metabolism, their roles in redox homeostasis, and related putative physiopathological repercussions associated with their decline in metabolic diseases and aging.


Sign in / Sign up

Export Citation Format

Share Document