Using Vibration Measurements to Assess Structural Integrity

Author(s):  
Jared L. Black

Structural vibration monitoring can aid in assessing offshore platform structural integrity. The method utilizes topside acceleration measurements to detect the platform’s natural periods of vibration; the periods depend only on platform weights (mass) and resistance (stiffness). If the platform’s natural period increases over time, in the absence of a change in mass, it can indicate a loss of structural integrity. The vibration survey utilizes a portable monitoring system, which includes sensitive low frequency accelerometers. The above water monitoring provides information on the below water structural integrity; the method is very low cost when compared to diver or ROV surveys. Examples of structural monitoring surveys are presented, including the following: verification that a platform remained fit for purpose despite having its foundation disturbed by a shallow gas release, two cases of using surveys to confirm jacket stiffness recovery following repairs of structural damage caused by Gulf of Mexico hurricanes and evaluation of a minimal platform after a heavy compressor was installed. The development of a natural period database is reviewed. The database, covering 95 platforms in Asian waters, was developed to reduce inspection costs and aid in life extension reviews, as well as providing quick integrity assessments should a tropical cyclone cross the production area.

2020 ◽  
Vol 2 (1) ◽  
pp. 16
Author(s):  
Guilherme Rezende ◽  
Fabricio Baptista

Piezoelectric transducers are used in a wide variety of applications, including damage detection in structural health monitoring (SHM) applications. Among the various methods for detecting structural damage, the electromechanical impedance (EMI) method is one of the most investigated in recent years. In this method, the transducer is typically excited with low frequency signals up to 500 kHz. However, recent studies have indicated the use of higher frequencies, usually above 1 MHz, for the detection of some types of damage and the monitoring of some structures’ characteristics that are not possible at low frequencies. Therefore, this study investigates the performance of low-cost piezoelectric diaphragms excited with high frequency signals for SHM applications based on the EMI method. Piezoelectric diaphragms have recently been reported in the literature as alternative transducers for the EMI method and, therefore, investigating the performance of these transducers at high frequencies is a relevant subject. Experimental tests were carried out with piezoelectric diaphragms attached to two aluminum bars, obtaining the impedance signatures from diaphragms excited with low and high frequency signals. The analysis was performed using the real part of the impedance signatures and two basic damage indices, one based on the Euclidean norm and the other on the correlation coefficient. The experimental results indicate that piezoelectric diaphragms are usable for the detection of structural damage at high frequencies, although the sensitivity decreases.


Author(s):  
Hamid Golpour ◽  
Mostafa Zeinoddini ◽  
Hadi Khalili ◽  
Ali Golbaz ◽  
Yashar Yaghubi ◽  
...  

The existing knowledge on the structural integrity assessment of offshore platforms may benefit from case studies on the life extension evaluations of aging structures. This paper presents a case study for the structural integrity assessment of an existing 8 legged aging drilling platform located in the Persian Gulf. The platform is now 42 years old and the objective of the study is to check its fit for purpose for a life extension of 25 years beyond 2012. The structural model is based on the best estimates of the existing conditions of the platform. A number of analysis approach such as i) assessment based on the previous exposures, ii) linear (elastic), iii) equivalent linear (or the linear global analysis with local overload considerations), and iv) non-linear analysis methods have been used to estimate the structural integrity of the platform. The paper provides further background, clarifications and proposed updates to API-RP 2A-Section 17. The paper is divided into three parts. Section 1 is a discussion on the background of the previous assessment study and perspective view on why the case study platform needs to be assessed. Section 2 and Section 3 include the finding of the code-noncompliance points of the platform based on the recommendations of API RP 2A-2007. Section 4 presents the remedy actions recommended for the fit for purpose of the platform.


Vibration ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 551-584
Author(s):  
Samir Mustapha ◽  
Ye Lu ◽  
Ching-Tai Ng ◽  
Pawel Malinowski

The development of structural health monitoring (SHM) systems and their integration in actual structures has become a necessity as it can provide a robust and low-cost solution for monitoring the structural integrity of and the ability to predict the remaining life of structures. In this review, we aim at focusing on one of the important issues of SHM, the design, and implementation of sensor networks. Location and number of sensors, in any SHM system, are of high importance as they impact the system integration, system performance, and accuracy of assessment, as well as the total cost. Hence we are interested in shedding the light on the sensor networks as an essential component of SHM systems. The review discusses several important parameters including design and optimization of sensor networks, development of academic and commercial solutions, powering of sensors, data communication, data transmission, and analytics. Finally, we presented some successful case studies including the challenges and limitations associated with the sensor networks.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Persona Paolo ◽  
Valeri Ilaria ◽  
Zarantonello Francesco ◽  
Forin Edoardo ◽  
Sella Nicolò ◽  
...  

Abstract Background During COVID-19 pandemic, optimization of the diagnostic resources is essential. Lung Ultrasound (LUS) is a rapid, easy-to-perform, low cost tool which allows bedside investigation of patients with COVID-19 pneumonia. We aimed to investigate the typical ultrasound patterns of COVID-19 pneumonia and their evolution at different stages of the disease. Methods We performed LUS in twenty-eight consecutive COVID-19 patients at both admission to and discharge from one of the Padua University Hospital Intensive Care Units (ICU). LUS was performed using a low frequency probe on six different areas per each hemithorax. A specific pattern for each area was assigned, depending on the prevalence of A-lines (A), non-coalescent B-lines (B1), coalescent B-lines (B2), consolidations (C). A LUS score (LUSS) was calculated after assigning to each area a defined pattern. Results Out of 28 patients, 18 survived, were stabilized and then referred to other units. The prevalence of C pattern was 58.9% on admission and 61.3% at discharge. Type B2 (19.3%) and B1 (6.5%) patterns were found in 25.8% of the videos recorded on admission and 27.1% (17.3% B2; 9.8% B1) on discharge. The A pattern was prevalent in the anterosuperior regions and was present in 15.2% of videos on admission and 11.6% at discharge. The median LUSS on admission was 27.5 [21–32.25], while on discharge was 31 [17.5–32.75] and 30.5 [27–32.75] in respectively survived and non-survived patients. On admission the median LUSS was equally distributed on the right hemithorax (13; 10.75–16) and the left hemithorax (15; 10.75–17). Conclusions LUS collected in COVID-19 patients with acute respiratory failure at ICU admission and discharge appears to be characterized by predominantly lateral and posterior non-translobar C pattern and B2 pattern. The calculated LUSS remained elevated at discharge without significant difference from admission in both groups of survived and non-survived patients.


2021 ◽  
pp. 136943322110384
Author(s):  
Xingyu Fan ◽  
Jun Li ◽  
Hong Hao

Vibration based structural health monitoring methods are usually dependent on the first several orders of modal information, such as natural frequencies, mode shapes and the related derived features. These information are usually in a low frequency range. These global vibration characteristics may not be sufficiently sensitive to minor structural damage. The alternative non-destructive testing method using piezoelectric transducers, called as electromechanical impedance (EMI) technique, has been developed for more than two decades. Numerous studies on the EMI based structural health monitoring have been carried out based on representing impedance signatures in frequency domain by statistical indicators, which can be used for damage detection. On the other hand, damage quantification and localization remain a great challenge for EMI based methods. Physics-based EMI methods have been developed for quantifying the structural damage, by using the impedance responses and an accurate numerical model. This article provides a comprehensive review of the exciting researches and sorts out these approaches into two categories: data-driven based and physics-based EMI techniques. The merits and limitations of these methods are discussed. In addition, practical issues and research gaps for EMI based structural health monitoring methods are summarized.


Author(s):  
Torgeir Moan

Based on relevant accident experiences with oil and gas platforms, a brief overview of structural integrity management of offshore structures is given; including an account of adequate design criteria, inspection, repair and maintenance as well as quality assurance and control of the engineering processes. The focus is on developing research based design standards for Accidental Collapse Limit States to ensure robustness or damage tolerance in view damage caused by accidental loads due to operational errors and to some extent abnormal structural damage due to fabrication errors. Moreover, it is suggested to provide robustness in cases where the structural performance is sensitive to uncertain parameters. The use of risk assessment to aid decisions in lieu of uncertainties affecting the performance of novel and existing offshore structures, is briefly addressed.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3721 ◽  
Author(s):  
Usman Rashid ◽  
Imran Niazi ◽  
Nada Signal ◽  
Denise Taylor

Texas Instruments ADS1299 is an attractive choice for low cost electroencephalography (EEG) devices owing to its low power consumption and low input referred noise. To date, there have been no rigorous evaluations of its performance. In this EEG experimental study we evaluated the performance of the ADS1299 against a high quality laboratory-based system. Two self-paced lower limb motor tasks were performed by 22 healthy participants. Recorded power across delta, theta, alpha, and beta EEG bands, the power ratio across the motor tasks, pre-movement noise, and signal-to-noise ratio were obtained for evaluation. The amplitude and time of the negative peak in the movement-related cortical potentials (MRCPs) extracted from the EEG data were also obtained. Using linear mixed models, no statistically significant differences (p > 0.05) were found in any of these measures across the two systems. These findings were further supported by evaluation of cosine similarity, waveform differences, and topographic maps. There were statistically significant differences in MRCPs across the motor tasks in both systems. We conclude that the performance of the ADS1299 in combination with wet Ag/AgCl electrodes is analogous to that of a laboratory-based system in a low frequency (<40 Hz) EEG recording.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3015 ◽  
Author(s):  
Jijian Lian ◽  
Hongzhen Wang ◽  
Haijun Wang

Research on the safety of powerhouse in a hydropower station is mostly concentrated on the vibration of machinery structure and concrete structure within a single unit. However, few studies have been focused on the vibration transmission among units. Due to the integrity of the powerhouse and the interaction, it is necessary to study the vibration transmission mechanism of powerhouse structure among units. In this paper, field structural vibration tests are conducted in an underground powerhouse of a hydropower station on Yalong River. Additionally, the simplified mechanical models are established to explain the transmission mechanism theoretically. Moreover, a complementary finite element (FE) model is built to replicate the testing conditions for comprehensive analysis. The field tests results show that: (1) the transmission of lateral-river vibration is greater than those of longitude-river vibration and vertical vibration; (2) the vibration transmission of the vibrations that is caused by the low frequency tail fluctuation is basically equal to that of the vibrations caused by rotation of hydraulic generator. The transmission mechanism is demonstrated by the simplified mechanical models and is verified by the FE results. This study can provide guidance for further research on the vibration of underground powerhouse structure.


Author(s):  
Osamu Furuya ◽  
Hiroshi Kurabayashi

The response control techniques are mainly divided into two categories. One is a storey installation damper type using a damping element such as oil, elasto-plastic, viscoelastic, and so on. The other is an additional mass damper type such as a active and passive type tuned mass damper including a hybrid type. The device configuration of later damper type becomes larger into high-rise structure and long natural period structure because of increase of additional mass in the same case of mass ratio and necessary design stroke of moving mass. In generally, however, it is desired to be a compact size with a same vibration attenuation performance because of that there is a limitation of installation space for the device, and also it is important to be realize the application of the damper with low cost and with a necessary specification for damper performance. This study has been conducted to develop the passive tuned mass damper system using coil spring for long period structure considering a design indexes such as compact size, low cost and robustness. Although a coil spring has been well used by the tuned mass damper system as one way of solving a cost problem and performance stability, the problem of compact size still remains in case of the application to a long period structure. Multistage type is therefore proposed to the system in this time. Furthermore, the distributed TMD theory is applied to the system for robustness of the system. This paper summarizes from a basic theory to the application of proposed device to the real scale long period structure.


Sign in / Sign up

Export Citation Format

Share Document