scholarly journals Brain Glucose Metabolism: Integration of Energetics with Function

2019 ◽  
Vol 99 (1) ◽  
pp. 949-1045 ◽  
Author(s):  
Gerald A. Dienel

Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron–astrocyte glutamate–glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen–carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 966
Author(s):  
Florencia Cascardo ◽  
Nicolás Anselmino ◽  
Alejandra Páez ◽  
Estefanía Labanca ◽  
Pablo Sanchis ◽  
...  

Prostate cancer (PCa) is the second most diagnosed malignancy and the fifth leading cause of cancer associated death in men worldwide. Dysregulation of cellular energetics has become a hallmark of cancer, evidenced by numerous connections between signaling pathways that include oncoproteins and key metabolic enzymes. We previously showed that heme oxygenase 1 (HO-1), a cellular homeostatic regulator counteracting oxidative and inflammatory damage, exhibits anti-tumoral activity in PCa cells, inhibiting cell proliferation, migration, tumor growth and angiogenesis. The aim of this study was to assess the role of HO-1 on the metabolic signature of PCa. After HO-1 pharmacological induction with hemin, PC3 and C4-2B cells exhibited a significantly impaired cellular metabolic rate, reflected by glucose uptake, ATP production, lactate dehydrogenase (LDH) activity and extracellular lactate levels. Further, we undertook a bioinformatics approach to assess the clinical significance of LDHA, LDHB and HMOX1 in PCa, identifying that high LDHA or low LDHB expression was associated with reduced relapse free survival (RFS). Interestingly, the shortest RFS was observed for PCa patients with low HMOX1 and high LDHA, while an improved prognosis was observed for those with high HMOX1 and LDHB. Thus, HO-1 induction causes a shift in the cellular metabolic profile of PCa, leading to a less aggressive phenotype of the disease.


2021 ◽  
Vol 7 (2) ◽  
pp. 123
Author(s):  
Tongfei Lai ◽  
Yangying Sun ◽  
Yaoyao Liu ◽  
Ran Li ◽  
Yuanzhi Chen ◽  
...  

Penicillium expansum is a major postharvest pathogen that mainly threatens the global pome fruit industry and causes great economic losses annually. In the present study, the antifungal effects and potential mechanism of cinnamon oil against P. expansum were investigated. Results indicated that 0.25 mg L−1 cinnamon oil could efficiently inhibit the spore germination, conidial production, mycelial accumulation, and expansion of P. expansum. In addition, it could effectively control blue mold rots induced by P. expansum in apples. Cinnamon oil could also reduce the expression of genes involved in patulin biosynthesis. Through a proteomic quantitative analysis, a total of 146 differentially expressed proteins (DEPs) involved in the carbohydrate metabolic process, most of which were down-regulated, were noticed for their large number and functional significance. Meanwhile, the expressions of 14 candidate genes corresponding to DEPs and the activities of six key regulatory enzymes (involving in cellulose hydrolyzation, Krebs circle, glycolysis, and pentose phosphate pathway) showed a similar trend in protein levels. In addition, extracellular carbohydrate consumption, intracellular carbohydrate accumulation, and ATP production of P. expansum under cinnamon oil stress were significantly decreased. Basing on the correlated and mutually authenticated results, we speculated that disturbing the fungal carbohydrate metabolic process would be partly responsible for the inhibitory effects of cinnamon oil on P. expansum growth. The findings would provide new insights into the antimicrobial mode of cinnamon oil.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3018
Author(s):  
Marek Samec ◽  
Alena Liskova ◽  
Lenka Koklesova ◽  
Kevin Zhai ◽  
Elizabeth Varghese ◽  
...  

Metabolic reprogramming characterized by alterations in nutrient uptake and critical molecular pathways associated with cancer cell metabolism represents a fundamental process of malignant transformation. Melatonin (N-acetyl-5-methoxytryptamine) is a hormone secreted by the pineal gland. Melatonin primarily regulates circadian rhythms but also exerts anti-inflammatory, anti-depressant, antioxidant and anti-tumor activities. Concerning cancer metabolism, melatonin displays significant anticancer effects via the regulation of key components of aerobic glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP) and lipid metabolism. Melatonin treatment affects glucose transporter (GLUT) expression, glucose-6-phosphate dehydrogenase (G6PDH) activity, lactate production and other metabolic contributors. Moreover, melatonin modulates critical players in cancer development, such as HIF-1 and p53. Taken together, melatonin has notable anti-cancer effects at malignancy initiation, progression and metastasing. Further investigations of melatonin impacts relevant for cancer metabolism are expected to create innovative approaches supportive for the effective prevention and targeted therapy of cancers.


2021 ◽  
pp. 0271678X2098150
Author(s):  
June van Aalst ◽  
Jenny Ceccarini ◽  
Stefan Sunaert ◽  
Patrick Dupont ◽  
Michel Koole ◽  
...  

Preclinical and postmortem studies have suggested that regional synaptic density and glucose consumption (CMRGlc) are strongly related. However, the relation between synaptic density and cerebral glucose metabolism in the human brain has not directly been assessed in vivo. Using [11C]UCB-J binding to synaptic vesicle glycoprotein 2 A (SV2A) as indicator for synaptic density and [18F]FDG for measuring cerebral glucose consumption, we studied twenty healthy female subjects (age 29.6 ± 9.9 yrs) who underwent a single-day dual-tracer protocol (GE Signa PET-MR). Global measures of absolute and relative CMRGlc and specific binding of [11C]UCB-J were indeed highly significantly correlated ( r > 0.47, p < 0.001). However, regional differences in relative [18F]FDG and [11C]UCB-J uptake were observed, with up to 19% higher [11C]UCB-J uptake in the medial temporal lobe (MTL) and up to 17% higher glucose metabolism in frontal and motor-related areas and thalamus. This pattern has a considerable overlap with the brain regions showing different levels of aerobic glycolysis. Regionally varying energy demands of inhibitory and excitatory synapses at rest may also contribute to this difference. Being unaffected by astroglial and/or microglial energy demands, changes in synaptic density in the MTL may therefore be more sensitive to early detection of pathological conditions compared to changes in glucose metabolism.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Senthilkumar Sivanesan ◽  
Ravi Mundugaru ◽  
Jayakumar Rajadas

Vascular dysfunctions, hypometabolism, and insulin resistance are high and early risk factors for Alzheimer’s disease (AD), a leading neurological disease associated with memory decline and cognitive dysfunctions. Early defects in glucose transporters and glycolysis occur during the course of AD progression. Hypometabolism begins well before the onset of early AD symptoms; this timing implicates the vulnerability of hypometabolic brain regions to beta-secretase 1 (BACE-1) upregulation, oxidative stress, inflammation, synaptic failure, and cell death. Despite the fact that ketone bodies, astrocyte-neuron lactate shuttle, pentose phosphate pathway (PPP), and glycogenolysis compensate to provide energy to the starving AD brain, a considerable energy crisis still persists and increases during disease progression. Studies that track brain energy metabolism in humans, animal models of AD, and in vitro studies reveal striking upregulation of beta-amyloid precursor protein (β-APP) and carboxy-terminal fragments (CTFs). Currently, the precise role of CTFs is unclear, but evidence supports increased endosomal-lysosomal trafficking of β-APP and CTFs through autophagy through a vague mechanism. While intracellular accumulation of Aβ is attributed as both the cause and consequence of a defective endolysosomal-autophagic system, much remains to be explored about the other β-APP cleavage products. Many recent works report altered amino acid catabolism and expression of several urea cycle enzymes in AD brains, but the precise cause for this dysregulation is not fully explained. In this paper, we try to connect the role of CTFs in the energy translation process in AD brain based on recent findings.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Simeng Zhang ◽  
Zhongyan Hua ◽  
Gen Ba ◽  
Ning Xu ◽  
Jianing Miao ◽  
...  

Abstract Background Neuroblastoma (NB) is a common solid malignancy in children that is associated with a poor prognosis. Although the novel small molecular compound Dimethylaminomicheliolide (DMAMCL) has been shown to induce cell death in some tumors, little is known about its role in NB. Methods We examined the effect of DMAMCL on four NB cell lines (NPG, AS, KCNR, BE2). Cellular confluence, survival, apoptosis, and glycolysis were detected using Incucyte ZOOM, CCK-8 assays, Annexin V-PE/7-AAD flow cytometry, and Seahorse XFe96, respectively. Synergistic effects between agents were evaluated using CompuSyn and the effect of DMAMCL in vivo was evaluated using a xenograft mouse model. Phosphofructokinase-1, liver type (PFKL) expression was up- and down-regulated using overexpression plasmids or siRNA. Results When administered as a single agent, DMAMCL decreased cell proliferation in a time- and dose-dependent manner, increased the percentage of cells in SubG1 phase, and induced apoptosis in vitro, as well as inhibiting tumor growth and prolonging survival in tumor-bearing mice (NGP, BE2) in vivo. In addition, DMAMCL exerted synergistic effects when combined with etoposide or cisplatin in vitro and displayed increased antitumor effects when combined with etoposide in vivo compared to either agent alone. Mechanistically, DMAMCL suppressed aerobic glycolysis by decreasing glucose consumption, lactate excretion, and ATP production, as well as reducing the expression of PFKL, a key glycolysis enzyme, in vitro and in vivo. Furthermore, PFKL overexpression attenuated DMAMCL-induced cell death, whereas PFKL silencing promoted NB cell death. Conclusions The results of this study suggest that DMAMCL exerts antitumor effects on NB both in vitro and in vivo by suppressing aerobic glycolysis and that PFKL could be a potential target of DMAMCL in NB.


Oncotarget ◽  
2015 ◽  
Vol 7 (3) ◽  
pp. 2910-2920 ◽  
Author(s):  
Géraldine De Preter ◽  
Marie-Aline Neveu ◽  
Pierre Danhier ◽  
Lucie Brisson ◽  
Valéry L. Payen ◽  
...  

2002 ◽  
Vol 364 (1) ◽  
pp. 309-315 ◽  
Author(s):  
Michael GUPPY ◽  
Peter LEEDMAN ◽  
XinLin ZU ◽  
Victoria RUSSELL

For the past 70 years the dominant perception of cancer metabolism has been that it is fuelled mainly by glucose (via aerobic glycolysis) and glutamine. Consequently, investigations into the diagnosis, treatment and the basic metabolism of cancer cells have been directed by this perception. However, the data on cancer metabolism are equivocal, and in this study we have sought to clarify the issue. Using an innovative system we have measured the total ATP turnover of the MCF-7 breast cancer cell line, the contributions to this turnover by oxidative and glycolytic ATP production and the contributions to the oxidative component by glucose, lactate, glutamine, palmitate and oleate. The total ATP turnover over approx. 5days was 26.8μmol of ATP·107 cells−1·h−1. ATP production was 80% oxidative and 20% glycolytic. Contributions to the oxidative component were approx. 10% glucose, 14% glutamine, 7% palmitate, 4% oleate and 65% from unidentified sources. The contribution by glucose (glycolysis and oxidation) to total ATP turnover was 28.8%, glutamine contributed 10.7% and glucose and glutamine combined contributed 40%. Glucose and glutamine are significant fuels, but they account for less than half of the total ATP turnover. The contribution of aerobic glycolysis is not different from that in a variety of other non-transformed cell types.


2013 ◽  
Vol 450 (3) ◽  
pp. 595-605 ◽  
Author(s):  
Peter Spégel ◽  
Vladimir V. Sharoyko ◽  
Isabel Goehring ◽  
Anders P. H. Danielsson ◽  
Siri Malmgren ◽  
...  

Insulin secretion is coupled with changes in β-cell metabolism. To define this process, 195 putative metabolites, mitochondrial respiration, NADP+, NADPH and insulin secretion were measured within 15 min of stimulation of clonal INS-1 832/13 β-cells with glucose. Rapid responses in the major metabolic pathways of glucose occurred, involving several previously suggested metabolic coupling factors. The complexity of metabolite changes observed disagreed with the concept of one single metabolite controlling insulin secretion. The complex alterations in metabolite levels suggest that a coupling signal should reflect large parts of the β-cell metabolic response. This was fulfilled by the NADPH/NADP+ ratio, which was elevated (8-fold; P<0.01) at 6 min after glucose stimulation. The NADPH/NADP+ ratio paralleled an increase in ribose 5-phosphate (>2.5-fold; P<0.001). Inhibition of the pentose phosphate pathway by trans-dehydroepiandrosterone (DHEA) suppressed ribose 5-phosphate levels and production of reduced glutathione, as well as insulin secretion in INS-1 832/13 β-cells and rat islets without affecting ATP production. Metabolite profiling of rat islets confirmed the glucose-induced rise in ribose 5-phosphate, which was prevented by DHEA. These findings implicate the pentose phosphate pathway, and support a role for NADPH and glutathione, in β-cell stimulus-secretion coupling.


2019 ◽  
Vol 31 (1) ◽  
pp. 159
Author(s):  
J. Chung ◽  
R. Clifford ◽  
G. Sriram ◽  
C. Keefer

Embryo quality and maternal recognition are crucial for successful initiation of bovine pregnancy. Previous studies have proposed that better quality embryos use aerobic glycolysis to meet a high demand for biomass components. While hexoses are the principal carbon sources that provide energy to glycolysis, little is known about partitioning of hexoses into metabolic pathways or alteration of partitioning when different hexoses are simultaneously available. Specific metabolic utilisation of 13C-labelled substrates can be quantified by gas chromatography-mass spectrometry, an excellent noninvasive approach for studying cellular metabolism. To assess hexose flux through central metabolism, bovine blastocysts and CT1 cells (a bovine trophectoderm cell line) were cultured in SOF-based media supplemented with combinations of 50% uniformly labelled (U) and 50% naturally abundant (NA) glucose (Glc) or fructose (Fru) (U−13C Glc+NA Glc, U−13C Fru+NA Fru, U−13C Glc+NA Fru, and U−13C Fru+NA Glc), such that total hexose concentration was 1.5mM. Metabolites in spent media from 24-h cultures of single or 5 blastocysts (40-μL drops; 5% CO2, 5% O2, 90% N2) and 1-, 2-, 3-, 6-, 8-, and 24-h incubations of CT1 cells (150 μL; ~3×104 cells per well; 5% CO2, 95% air) were extracted with a MeOH-CHCl3 reagent, derivatized, and analysed by gas chromatography-mass spectrometry. Measurement of mass isotopomer distributions of metabolites, chiefly pyruvate, lactate, and amino acids, followed by correction for natural abundances and metabolic modelling, revealed several insights. For instance, five Day 7 or Day 8 blastocysts (Day 0=fertilization) supplied with U−13C Glc+NA Fru displayed 13C enrichments of 80.3%±1.4% for pyruvate and 71.6%±2.8% for lactate, whereas when supplied with U−13C Fru+NA Glc, they displayed lower 13C enrichments of 5.7%±2.4% for pyruvate and 2.8%±0.4% lactate (mean±standard deviation, n=3 to 4). Metabolic modelling revealed that when Glc and Fru are simultaneously available, the blastocysts used 2.5±0.2 moles of Fru per 100 moles of Glc used. Furthermore, 13C enrichment of pyruvate was 42.0±0.6% when U−13C Glc+NA Glc was supplied and 37.8±2.7% when U−13C Fru+NA Fru was supplied. Lactate enrichments followed a similar trend. This indicates that, individually, Glc and Fru were utilised majorly through aerobic glycolysis with some involvement of the pentose phosphate pathway. Alanine was negligibly labelled in all of the experiments, suggesting either a low TCA flux or that alanine is diluted by extra- or intracellular amino or fatty acids. Single blastocysts and CT1 cells showed a similar labelling pattern when hexoses were available. Following Glc depletion at 8h in CT1 cultures, the 13C enrichments of alanine and citrate in the media increased, suggesting a sharp alteration of metabolic state. These findings demonstrate that metabolic flux can be comprehensively analysed for single bovine blastocysts and CT1 cell metabolism models that of the blastocyst. This project was supported by Agriculture and Food Research Initiative Competitive Grant no. 2015-67015-23237 from the USDA National Institute of Food and Agriculture.


Sign in / Sign up

Export Citation Format

Share Document