scholarly journals Electroacupuncture Alleviates Inflammation of Dry Eye Diseases by Regulating the α7nAChR/NF-κB Signaling Pathway

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ning Ding ◽  
Qingbo Wei ◽  
Weimin Deng ◽  
Xinyi Sun ◽  
Jie Zhang ◽  
...  

Purpose. We tried to investigate whether electroacupuncture (EA) can reduce inflammation of dry eye disease (DED) by regulating α7nAChR and inhibiting the NF-κB signaling pathway. Methods. Healthy New Zealand white rabbits were treated with scopolamine hydrobromide (Scop) for 21 consecutive days to establish the DED animal model. After 21 days, EA, fluorometholone (Flu), and α7nAChR antagonist (α-BGT) treatments were performed, and the Scop injection was continued until day 35. During treatment, the fluorescence staining of the corneal epithelium and the level of tear flow were observed. The influence of EA on the LG pathology and inflammatory factors ACh, α7nAChR, and NF-κB was detected using the LG histopathology, transmission electron microscopy (TEM), cytokine protein chip technology, enzyme-linked immunosorbent assay (ELISA), and Western blot. Results. The EA stimulation can reduce the corneal epithelial damage and repair epithelial cell ultrastructure, promote the tear secretion, relieve the LG atrophy and decrease lipid droplet accumulation in LG acinar cell, and reduce the levels of inflammatory cytokines (i.e., IL-1, MIP-1b, TNF-α, and IL-8) in the LG. The protective effect of EA on the inflammation and the ocular surface is similar to the corticosteroid Flu. EA and Flu can upregulate the expression of the α7nAChR and downregulate the expression of NF-κB. The α7nAChR antagonist α-BGT can reverse the protective effect of EA on the LG and the inhibitory effect on the NF-κB pathway and the expression of inflammatory factors but cannot affect the expression of Flu on the NF-κB pathway and inflammatory factors. Conclusion. These results prove that EA can alleviate DEDs by stimulating the acupoints around the eyes. These beneficial effects are related to the upregulation of α7nAChR and the downregulation of NF-κB in the LG. The protective effect of LG is mediated through the anti-inflammatory pathway mediated by α7nAChR. EA can reduce the NF-κB P65 nuclear transcription and reduce inflammatory factors by regulating α7nAChR. This expression indicates that the α7nAChR/NF-κB signaling pathway may serve as a potential therapeutic target for EA to treat DEDs.

Medicines ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 106 ◽  
Author(s):  
Yuanjun Deng ◽  
Kairui Tang ◽  
Runsen Chen ◽  
Yajie Liu ◽  
Huan Nie ◽  
...  

Background: In traditional Chinese medicine, the Shugan-Jianpi recipe is often used in the treatment of nonalcoholic fatty liver disease (NAFLD). This study aimed to explore the mechanism of the Shugan-Jianpi recipe in relation to rats with NAFLD induced by a high-fat diet. Methods: Rats were randomly divided into eight groups: normal group (NG), model group (MG), low-dose Chaihu–Shugan–San group (L-CG), high-dose Chaihu–Shugan–San group (H-CG), low-dose Shenling–Baizhu–San group (L-SG), high-dose Shenling–Baizhu–San group (H-SG), low dose of integrated-recipes group (L-IG), and high dose of integrated-recipes group (H-IG). After 26 weeks, a lipid profile, aspartate, and alanine aminotransferases in serum were detected. The serum levels of inflammatory factors including interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) were analyzed using the enzyme linked immunosorbent assay (ELISA) method. Hepatic pathological changes were observed with hematoxylin-eosin (HE) and oil red O staining. The expression of the p38 mitogen-activated protein kinases (MAPK)/nuclear factor-κB (NF-κB) pathway was detected by quantitative real-time PCR and Western blotting. Results: A pathological section revealed that NAFLD rats have been successfully reproduced. Compared with the model group, each treatment group had different degrees of improvement. The Shugan-Jianpi recipe can inhibit the serum levels of IL-1β, IL-6, and TNF-α in NAFLD rats. The expression of mRNA and a protein related to the p38 MAPK/NF-κB signaling pathway were markedly decreased as a result of the Shugan-Jianpi recipe. Conclusions: The Shugan-Jianpi recipe could attenuate NAFLD progression, and its mechanism may be related to the suppression of the p38 MAPK/NF-κB signaling pathway in hepatocytes.


Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 395 ◽  
Author(s):  
Zi Wang ◽  
Weinan Hao ◽  
Junnan Hu ◽  
Xiaojie Mi ◽  
Ye Han ◽  
...  

Maltol, a food-flavoring agent and Maillard reaction product formed during the processing of red ginseng (Panax ginseng, C.A. Meyer), has been confirmed to exert a hepatoprotective effect in alcohol-induced oxidative damage in mice. However, its beneficial effects on acetaminophen (APAP)-induced hepatotoxicity and the related molecular mechanisms remain unclear. The purpose of this article was to investigate the protective effect and elucidate the mechanisms of action of maltol on APAP-induced liver injury in vivo. Maltol was administered orally at 50 and 100 mg/kg daily for seven consecutive days, then a single intraperitoneal injection of APAP (250 mg/kg) was performed after the final maltol administration. Liver function, oxidative indices, inflammatory factors—including serum alanine and aspartate aminotransferases (ALT and AST), tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), liver glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) were measured. Results demonstrated that maltol possessed a protective effect on APAP-induced liver injury. Liver histological changes and Hoechst 33258 staining also provided strong evidence for the protective effect of maltol. Furthermore, a maltol supplement mitigated APAP-induced inflammatory responses by increasing phosphorylated nuclear factor-kappa B (NF-κB), inhibitor kappa B kinase α/β (IKKα/β), and NF-kappa-B inhibitor alpha (IκBα) in NF-κB signal pathways. Immunoblotting results showed that maltol pretreatment downregulated the protein expression levels of the B-cell-lymphoma-2 (Bcl-2) family and caspase and altered the phosphorylation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) in a dose-dependent manner. In conclusion, our findings clearly demonstrate that maltol exerts a significant liver protection effect, which may partly be ascribed to its anti-inflammatory and anti-apoptotic action via regulation of the PI3K/Akt signaling pathway.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Yuqin Ye ◽  
Yongxiang Yang ◽  
Chen Chen ◽  
Ze Li ◽  
Yanfeng Jia ◽  
...  

The protective role of electroacupuncture (EA) treatment in diverse neurological diseases such as ischemic stroke is well acknowledged. However, whether and how EA act on hippocampal neurogenesis following traumatic brain injury (TBI) remains poorly understood. This study aims to investigate the effect of EA on hippocampal neurogenesis and neurological functions, as well as its underlying association with toll-like receptor 4 (TLR4) signaling in TBI mice. BrdU/NeuN immunofluorescence was performed to label newborn neurons in the hippocampus after EA treatment. Water maze test and neurological severity score were used to evaluate neurological function posttrauma. The hippocampal level of TLR4 and downstream molecules and inflammatory cytokines were, respectively, detected by Western blot and enzyme-linked immunosorbent assay. EA enhanced hippocampal neurogenesis and inhibited TLR4 expression at 21, 28, and 35 days after TBI, but the beneficial effects of EA on posttraumatic neurogenesis and neurological functions were attenuated by lipopolysaccharide-induced TLR4 activation. In addition, EA exerted an inhibitory effect on both TLR4/Myd88/NF-κB and TLR4/TRIF/NF-κB pathways, as well as the inflammatory cytokine expression in the hippocampus following TBI. In conclusion, EA promoted hippocampal neurogenesis and neurological recovery through inhibition of TLR4 signaling pathway posttrauma, which may be a potential approach to improve the outcome of TBI.


2017 ◽  
Vol 42 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Xin Xue ◽  
Yi Qiu ◽  
Hong-Li Yang

Background/Aims: The purpose of this study is to explore the immunoregulatory role of microRNA-21 (miR-21) targeting of the TLR4/MyD88 signaling pathway in macrophages in response to Bacillus Calmette-Guerin (BCG) infection. Methods: After infection with BCG, mouse RAW246.7 cells were assigned into control, BCG, miR-21 mimic + BCG, mimic-negative control (NC) + BCG, miR-21 inhibitor + BCG, inhibitor-NC + BCG, BCG + TAK242 (an inhibitor of the TLR4 signaling pathway), and miR-21 inhibitor + TAK242 + BCG groups. Western blotting and qRT-PCR were used to detect the expression of miR-21, TLR4 and MyD88. The levels of TNF-a, IL-6 and IL-10 were detected by enzyme-linked immunosorbent assay (ELISA). Cell viability was measured using an MTT assay. Cell apoptosis and necrosis rates were detected using flow cytometry. Results: Compared with the control group, miR-21 expression and levels of TNF-a, IL-6 and IL-10, as well as cell apoptosis and necrosis rates, were elevated, while expression of TLR4 and MyD88, as well as cell viability, were reduced in BCG infection groups. Compared with the BCG group, miR-21 expression was increased in the miR-21 mimic + BCG group but decreased in the miR-21 inhibitor + BCG and miR-21 inhibitor + TAK242 + BCG groups. The expression of TLR4 and MyD88, as well as the cell viability, were decreased, while levels of TNF-a, IL-6 and IL-10, as well as cell apoptosis and necrosis rates, were increased in the miR-21 mimic + BCG and TAK242 + BCG groups. The opposite trends were found in the miR-21 inhibitor + BCG group. Compared with the TAK242 + BCG group, the miR-21 inhibitor + TAK242 + BCG group had higher expression of TLR4 and MyD88 as well as higher cell viability and lower levels of TNF-a, IL-6, IL-10, cell apoptosis and necrosis rates. However, the miR-21 inhibitor + TAK242 + BCG group exhibited the opposite trends when compared with the miR-21 inhibitor + BCG group. Conclusion: Our results suggest that miR-21 can negatively modulate the TLR4/MyD88 signaling pathway, resulting in decreased cell viability, increased cell apoptosis and increased levels of inflammatory factors following BCG infection in macrophages.


2021 ◽  
Vol 14 ◽  
Author(s):  
Yanxia Fei ◽  
Jiali Shao ◽  
Ge Huang ◽  
Lijuan Wang ◽  
Shuangfa Zou ◽  
...  

Background and Objective: Hepatic ischemia-reperfusion injury (HIRI) results in serious complications after liver resection and transplantation. Edaravone (ED) has a protective effect on IRI. This study was designed to evaluate whether ED could protect the liver of rats from HIRI injury and explored its exosomal miRNA-related mechanism. Methods: The sham group, hepatic ischemia/reperfusion (IR group), and hepatic ischemia/reperfusion + edaravone (ED group) models were established. We determined the protective effect of ED by measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), superoxide dismutase (SOD); enzyme-linked immunosorbent assay for tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β); hematoxylin-eosin staining and immunohistochemistry for histopathological changes. Exosomal miRNAs were subjected to second-generation sequencing to identify their differential expression. The results were analyzed using bioinformatics methods and validated using real-time quantitative polymerase chain reaction (RT-qPCR). Results: HIRI rats showed higher levels of ALT, AST, oxidative stress, and inflammatory markers; ED attenuated these effects. The sequencing results showed 6 upregulated and 13 downregulated miRNAs in the IR vs. sham groups, 10 upregulated and 10 downregulated miRNAs in the ED vs. IR groups. PC-3p-190-42101 was screened as an overlapping differentially expressed miRNA, and RT-qPCR validation showed that its expression in HIRI rats was significantly decreased; ED prevented this downregulation. Moreover, the expression of PC-3P-190-42101 was significantly correlated with the level of inflammatory factors. Conclusion: These findings indicate that ED can regulate the level of inflammatory factors by affecting the expression of miRNA PC-3p-190-42101 in plasma exosomes to protect the liver from IRI.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Xue Bing ◽  
Liu Xuelei ◽  
Dong Wanwei ◽  
Liang Linlang ◽  
Chen Keyan

Objective. To observe the protective effect of epigallocatechin gallate (EGCG) on dextran sulfate sodium- (DSS-) induced ulcerative colitis in rats and to explore the roles of TLR4/MyD88/NF-κB signaling pathway. Methods. Rat models of ulcerative colitis were established by giving DSS. EGCG (50 mg/kg/d) was given to assess disease activity index. HE staining was applied to observe histological changes. ELISA and qPCR detected the expression of inflammatory factors. Flow cytometry was used to measure the percentage of CD4+IFN-γ+ and CD4+IL-4+ in the spleen and colon. TLR4 antagonist E5564 was given in each group. Flow cytometry was utilized to detect CD4+IFN-γ+ and CD4+IL-4+ cells. Immunohistochemistry, qPCR, and western blot assay were applied to measure the expression of TLR4, MyD88, and NF-κB. Results. EGCG improved the intestinal mucosal injury in rats, inhibited production of inflammatory factors, maintained the balance of Th1/Th2, and reduced the expression of TLR4, MyD88, and NF-κB. After TLR4 antagonism, the protective effect of EGCG on intestinal mucosal injury was weakened in rats with ulcerative colitis, and the expressions of inflammatory factors were upregulated. Conclusion. EGCG can inhibit the intestinal inflammatory response by reducing the severity of ulcerative colitis and maintaining the Th1/Th2 balance through the TLR4/MyD88/NF-κB signaling pathway.


2020 ◽  
Vol 40 (5) ◽  
Author(s):  
Bing Pei ◽  
Keyan Chen ◽  
Shenglai Zhou ◽  
Dongyu Min ◽  
Weiguo Xiao

Abstract Objective: To observe the restraining effect of IL-38 on inflammatory response in collagen-induced arthritis rats (CIA), and to explore the regulatory mechanism of SIRT1/HIF-1α signaling pathway. Methods: 40 SD rats were randomly divided into Control group, CIA group, CLL group and CLH group, with 10 rats in each group; CIA rat model was established. The effects of IL-38 on arthritis index, inflammatory response, osteogenic factor and angiogenic factor were observed by methods including HE staining, ELISA, immunohistochemical and immunofluorescence. Human synoviocytes were cultured in vitro, and SIRT1 inhibitors were added to detect the expression for relating factors of SIRT1/HIF-1α signaling pathway by Western blot. Results: IL-38 could alleviate CIA joint damage and restrain inflammatory response, could up-regulate the expression of OPG in CIA rats and could down-regulate the expression of RANKL and RANK. IL-38 could restrain the expression of VEGF, VEGFR1, VEGFR2 and HIF. Moreover, we found that IL-38 could up-regulate the SIRT1 expression and down-regulate the HIF-1α, TLR4 and NF-KB p65 expression in CLL and CLH groups. From the treatment of synoviocytes to simulate the CIA model and the treatment of SIRT1 inhibitors, we demonstrated that the inhibitory effect of IL-38 on inflammatory factors and regulation of SIRT1/HIF-1α signaling pathway-related proteins were inhibited. Conclusion: IL-38 can restrain the inflammatory response of CIA rats, can promote the expression of osteogenic factors, can inhibit neovascularization, and can alleviate joint damage in rats. The mechanism may be related to the regulation of SIRT1/HIF-1α signaling pathway.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Guoping Yang ◽  
Guofu Wang ◽  
Liting Liu ◽  
Kaixin Zhai ◽  
Xiaowen Chen ◽  
...  

Purpose. This research was designed to investigate the protective effect of rifampicin (RIF) loaded by N-(2-hydroxypropyl) methylacrylamide- (HPMA-) polylactic acid (PLA) nanopolymer on macrophages infected with Mycobacterium tuberculosis (MTB). Methods. We first induced H37Rv to infect macrophages to build a cell model. Then, the HPMA-PLA nanopolymer loaded with RIF was prepared to treat MTB-infected macrophages. The macrophage activity was tested by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the nitric oxide (NO) in cells was measured through Griess reagent, and the bacterial activity of MTB was observed via the colony-forming unit (CFU) assay. The inflammation-related factors in cells were detected via the enzyme-linked immunosorbent assay (ELISA), the apoptosis of macrophages was examined via flow cytometry, and the expression of apoptosis-related proteins was determined by western blot (WB). Results. HPMA-PLA had no obvious toxicity to macrophages. The expression of NO and inflammatory factors in macrophages infected with MTB increased significantly, but the apoptosis rate was not significantly different from that of uninfected cells. However, after treatment with HPMA-PLA-RIF or free RIF, the inflammatory reaction of infected cells was inhibited, the expression of NO was decreased, the apoptosis rate was increased, and the bacterial activity in cells was decreased, with statistically significant differences; moreover, HPMA-PLA-RIF was more effective than free RIF. Conclusions. HPMA-PLA-RIF has a high protective effect on macrophages infected with MTB, with high safety. Its protective mechanism is at least partly through inhibiting the production of NO and inflammatory response, which can inhibit bacterial activity and induce cell apoptosis.


Author(s):  
Wen-Ya Su ◽  
Ying Li ◽  
Xuan Chen ◽  
Xin Li ◽  
Heng Wei ◽  
...  

Although ginseng (Panax ginseng C.A. Meyer) has received extensive attention in the treatment and prevention of type 2 diabetes mellitus (T2DM) in the past few decades, there are few studies on the complications of T2DM. At present, obesity-linked diabetic nephropathy (DN) has become the most prevailing element of the end-stage renal failure in the world. The aim of this work is to evaluate the ameliorative effects of ginsenoside Rh1 (G-Rh1) on DN induced by high fat diet plus streptozotocin (HFD/STZ) through some potential and combined mechanisms of action. The results showed that G-Rh1 treatment at 5 and 10 mg/kg for 8 weeks exerted excellent effects in controlling fasting blood glucose (FBG), improving glucose tolerance, and increasing insulin level. In addition, G-Rh1 effectively prevents the excessive production of advanced glycation end products (AGEs), a diabetic nephropathy marker, in HFD/STZ induced DN mice. Meanwhile, oxidation indicators including SOD, GSH, and MDA were improved by G-Rh1 treatment to varying degrees. It is worth noting that G-Rh1 not only inhibits the secretion of Nox1 and Nox4 in kidney tissues, but also has an inhibitory effect on inflammatory factors and NF-[Formula: see text]B signaling pathway. Importantly, further in-depth research on molecular mechanisms provides vital evidence that the ameliorative effect of G-Rh1 on DN is related to the inhibition of apoptosis and the AMPK/PI3K/Akt signaling pathway. In summary, G-Rh1 may be of great value in improving the treatment of DN although more experimental data is needed.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Chae Eun Kim ◽  
Ji Hyun Lee ◽  
Yeung Kyu Yeon ◽  
Chan Hum Park ◽  
JaeWook Yang

AbstractThe study aimed to investigate the effects of silk fibroin in a mouse model of dry eye. The experimental dry eye mouse model was developed using more than twelve-weeks-old NOD.B10.H2bmice exposing them to 30–40% ambient humidity and injecting them with scopolamine hydrobromide for 10 days. Tear production and corneal irregularity score were measured by the instillation of phosphate buffered saline or silk fibroin. Corneal detachment and conjunctival goblet cell density were observed by hematoxylin and eosin or periodic acid Schiff staining in the cornea or conjunctiva. The expression of inflammatory markers was detected by immunohistochemistry in the lacrimal gland. The silk group tear production was increased, and corneal smoothness was improved. The corneal epithelial cells and conjunctival goblet cells were recovered in the silk groups. The expression of inflammatory factors was inhibited in the lacrimal gland of the silk group. These results show that silk fibroin improved the cornea, conjunctiva, and lacrimal gland in the mouse model of dry eye. These findings suggest that silk fibroin has anti-inflammatory effects in the experimental models of dry eye.


Sign in / Sign up

Export Citation Format

Share Document