scholarly journals Tribological Behavior of Ni-Based WC-Co Coatings Deposited via Spray and Fuse Technique Varying the Oxygen Flow

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
H. Jiménez ◽  
J. J. Olaya ◽  
J. E. Alfonso

The tribological behavior of Ni-based WC-Co coatings is analyzed. The coatings were deposited on gray cast iron substrates in a spray and fuse process using SuperJet Eutalloy deposition equipment, varying the oxygen flow conditions in the flame. The crystallographic structure of the coatings was characterized via the X-ray diffraction (XRD) technique. The microhardness was measured on the surface and in cross sections of the coatings by means of a Knoop microhardness tester. The topography and the morphological characteristics of the coatings and the tribo-surfaces were examined using scanning electron microscopy (SEM) and confocal microscopy, while the chemical composition was measured by means of energy-dispersive X-ray spectroscopy (EDS). The tribological behavior of the coatings was examined via a cohesion-adhesion scratch test, using cross sections of the coatings. Furthermore, two wear tests were carried out, using the pin-on-disk method under ASTM G99 standard and an ASTM standard G65 sand/rubber wheel abrasion wear test. The wear of the coatings showed a close relationship to the porosity in the metal matrix; since then, in the abrasive wear test, a high porosity is related with lower hardness in the coatings; likewise, a low hardness is related with a high wear.

Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1080
Author(s):  
Jiménez Hernando ◽  
Olaya Jhon Jairo ◽  
Alfonso José Edgar

The tribological behavior of Ni-based coatings was analyzed. The coatings were deposited on grey cast iron substrates in a spray and fuse process using Superjet Eutalloy deposition equipment, varying the oxygen flow conditions in the flame. By means of the X-ray diffraction (XRD) technique, the crystal structure of the coatings was determined. The XRD patterns show the crystalline phases with principal reflections for Ni in the planes (111) and (222). Crystalline properties such as the orientation coefficient, crystallite size, and macrostrain showed the relationship with tribological and mechanical properties such as the dry wear rate and the microhardness. The microhardness was analyzed on the surface and on cross sections of the coatings by means of a Knoop microhardness tester. The topography and the morphological characteristics of the coatings and the tribo-surfaces were exanimated using scanning electron microscopy (SEM) and confocal microscopy, while the chemical composition was measured by means of energy-dispersive X-ray spectroscopy (EDS). The tribological behavior of the coatings was examined via the scratch cohesion–adhesion test, using cross sections of the coatings. Furthermore, adhesion and abrasion wear tests were carried out, using the pin-on-disk method, under the ASTM G99 standard and the ASTM G65 standard, respectively. The wear rate of the coatings showed a strong relation to the porosity in the metal matrix, which was previously determined via electrochemical characterization techniques.


2012 ◽  
Vol 482-484 ◽  
pp. 914-918
Author(s):  
Dan Yang Zhu ◽  
Wen Ping Liang ◽  
Qiang Miao ◽  
Kai Guo ◽  
Long Li

In order to improve the wear resistance of Ti2AlNb orthorhombic alloy, the carburized coating has been successfully prepared on Ti2AlNb alloy by double glow plasma technology. The microstructure, chemical composition and phase structure o f the carburized coating were analyzed by means of SEM, EDS and XRD. The Micro hardness of the alloy layer was measured, and the bond strength of carburized coating with substrate was also evaluated by scratch test. The tribological behaviors of layer were investigated by friction-wear test. The results show that a carburized layer is formed which is about 40μm and the content of C gradient decrease after double glow plasma carburizing, the Micro hardness of the layer is 1051 HV0.1 and the bond of the coating is 62N, the tribological behavior of layer is much better than matrix.


2018 ◽  
Vol 25 (08) ◽  
pp. 1950027 ◽  
Author(s):  
M. SARAVANAN ◽  
N. VENKATESHWARAN ◽  
A. DEVARAJU ◽  
A. KRISHNAKUMARI

This study presents the tribological behavior of austenitic 316L Stainless Steel (SS) coated with nano Tungsten Carbide (WC). The nano WC particles were prepared by mechano chemical method. The tungsten and toluene have been ball milled for 40[Formula: see text]h led to the synthesis of WC nano particles. An average particles size of 48[Formula: see text]nm was achieved. The prepared nano WC particles were deposited on 316L SS substrate as a thin film using DC magnetron sputtering process. The thickness of the nano WC coating was 5[Formula: see text][Formula: see text]m. The synthesized nano WC particles and the thin nano WC film are characterized using Scanning Electron Microscope (SEM), X-ray Diffraction (XRD) and Energy Dispersive X-ray Analysis (EDAX) technique. Vickers microhardness test was conducted to evaluate the microhardness of the thin film. A high microhardness value of 2242 HV[Formula: see text] was observed. The coated specimens are subjected to wear test using pin on disc setup and the tribological parameters such as friction and wear are analyzed. The results were compared with uncoated 316L SS specimen and micro WC particles coated 316L SS. The nano WC coated 316L SS possess high hardness and better wear resistance when compared with 316L SS and micro WC coated 316L SS specimen.


2010 ◽  
Vol 139-141 ◽  
pp. 872-876
Author(s):  
Dian Wu Zhang ◽  
Yu Xing Wang ◽  
Yan Qin Tang ◽  
Wen Zeng

The surface of ants was observed, analyzed and tested by using of scanning electron microscopy and X-ray energy spectrometer technology. On different surface of the ants, the waveform characteristics which were formed by different sizes of grooves were found. These cross sections of waveform surface were waveform curves which had continuous periods and amplitudes. Their sizes varied with different part of the ant. In addition, there was distribution of setae of various sizes on surface of the body. Under higher multiple of electron microscope, the bigger setae had the waveform surface of smaller periods and amplitudes. The results of composition analyzing indicated that the surface of ants contained multi-elements. Among these elements, the most abundant was O which content was over 57%. The following abundant element was C which content was more than 23%. The other elements such as Na, Mg, Zn, Si, P, S, Cl, K, Ca remained less than 3% respectively. The distribution of morphological characteristics and surface composition may contribute to the property of reducing soil adherence.


Author(s):  
Arkadeb Mukhopadhyay ◽  
Tapan Kumar Barman ◽  
Prasanta Sahoo

Sodium borohydride reduced electroless Ni–B coatings possess high hardness, wear resistance, and low coefficient of friction. They are found to be suitable candidates for wear reduction of mechanical components. In a quest to achieve enhanced tribological behavior and high thermal stability, the present work reports the inclusion of W to Ni–B coatings. Electroless method is employed for Ni–B–W coating deposition on AISI 1040 steel specimens. Post deposition, the coatings are heat treated at 350 ℃, 400 ℃, and 450 ℃. Deposit characterization is carried out using energy-dispersive X-ray analysis, X-ray diffraction, and scanning electron microscopy. Inclusion of W leads to an increase in microhardness and thermal stability of Ni–B coatings. The tribological behavior of as-deposited and heat-treated Ni–B–W coatings are investigated at room and elevated temperatures (100 ℃, 300 ℃, and 500 ℃). Heat-treated coatings show lower wear rate at room temperature compared to as-deposited ones but the coefficient of friction increases. Tribological test results at elevated temperatures suggest an improvement in the wear resistance and coefficient of friction at 300 ℃ and 500 ℃ in comparison with 100 ℃. Phase transformation study post wear test indicate microstructural changes in the coating due to the in situ heat treatment at high temperature. The tribological behavior of the coatings at 100 ℃ and 300 ℃ is mainly governed by the loose wear debris and formation of debris patches, respectively. Whereas at 500 ℃, formation of protective tribo-oxide patches is also observed.


Author(s):  
R.F. Egerton

SIGMAL is a short (∼ 100-line) Fortran program designed to rapidly compute cross-sections for L-shell ionization, particularly the partial crosssections required in quantitative electron energy-loss microanalysis. The program is based on a hydrogenic model, the L1 and L23 subshells being represented by scaled Coulombic wave functions, which allows the generalized oscillator strength (GOS) to be expressed analytically. In this basic form, the model predicts too large a cross-section at energies near to the ionization edge (see Fig. 1), due mainly to the fact that the screening effect of the atomic electrons is assumed constant over the L-shell region. This can be remedied by applying an energy-dependent correction to the GOS or to the effective nuclear charge, resulting in much closer agreement with experimental X-ray absorption data and with more sophisticated calculations (see Fig. 1 ).


Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


1987 ◽  
Vol 48 (C9) ◽  
pp. C8-669-C8-672 ◽  
Author(s):  
S. SINGH ◽  
S. KUMAR ◽  
D. MEHTA ◽  
M. L. GARG ◽  
N. SINGH ◽  
...  
Keyword(s):  

2016 ◽  
Vol 1 (3) ◽  
pp. 138-144
Author(s):  
Ina Edwina ◽  
Rista D Soetikno ◽  
Irma H Hikmat

Background: Tuberculosis (TB) and diabetes mellitus (DM) prevalence rates are increasing rapidly, especially in developing countries like Indonesia. There is a relationship between TB and DM that are very prominent, which is the prevalence of pulmonary TB with DM increased by 20 times compared with pulmonary TB without diabetes. Chest X-ray picture of TB patients with DM is atypical lesion. However, there are contradictories of pulmonary TB lesion on chest radiograph of DM patients. Nutritional status has a close relationship with the morbidity of DM, as well as TB.Objectives: The purpose of this study was to determine the relationship between the lesions of TB on the chest radiograph of patients who su?er from DM with their Body Mass Index (BMI) in Hasan Sadikin Hospital Bandung.Material and Methods: The study was conducted in Department of Radiology RSHS Bandung between October 2014 - February 2015. We did a consecutive sampling of chest radiograph and IMT of DM patients with clinical diagnosis of TB, then the data was analysed by Chi Square test to determine the relationship between degree of lesions on chest radiograph of pulmonary TB on patients who have DM with their BMI.Results: The results showed that adult patients with active pulmonary TB with DM mostly in the range of age 51-70 years old, equal to 62.22%, with the highest gender in men, equal to 60%. Chest radiograph of TB in patients with DM are mostly seen in people who are obese, which is 40% and the vast majority of lesions are minimal lesions that is equal to 40%.Conclusions: There is a signifcant association between pulmonary TB lesion degree with BMI, with p = 0.03


2020 ◽  
Vol 45 (3) ◽  
pp. 478-482
Author(s):  
Steven R. Manchester

Abstract—The type material on which the fossil genus name Ampelocissites was established in 1929 has been reexamined with the aid of X-ray micro-computed tomography (μ-CT) scanning and compared with seeds of extant taxa to assess the relationships of these fossils within the grape family, Vitaceae. The specimens were collected from a sandstone of late Paleocene or early Eocene age. Although originally inferred by Berry to be intermediate in morphology between Ampelocissus and Vitis, the newly revealed details of seed morphology indicate that these seeds represent instead the Ampelopsis clade. Digital cross sections show that the seed coat maintains its thickness over the external surfaces, but diminishes quickly in the ventral infolds. This feature, along with the elliptical chalaza and lack of an apical groove, indicate that Ampelocissites lytlensis Berry probably represents Ampelopsis or Nekemias (rather than Ampelocissus or Vitis) and that the generic name Ampelocissites may be useful for fossil seeds with morphology consistent with the Ampelopsis clade that lack sufficient characters to specify placement within one of these extant genera.


Sign in / Sign up

Export Citation Format

Share Document