scholarly journals Experimental Data of Grinding Dried Fibrous Plant Materials

2021 ◽  
Vol 31 (4) ◽  
pp. 591-608
Author(s):  
Sergey V. Braginets ◽  
Oleg N. Bakhchevnikov ◽  
Aleksandr S. Alferov

Introduction. Developing a method for energy-efficient grinding of fibrous vegetable raw materials to avoid the clogging of grids remains an urgent task. The aim of the research is to study the process of grinding dried fibrous plant materials and to estimate the influence of the device operating characteristics on the quality of grinding and the process energy intensity. Materials and Methods. The experimental apparatus is a rotor grinder. Its working bodies are alternate knives and hammers. When a hammer is in motion, its triangle side creates the reduced pressure area. There was studied the influence of the linear velocities of knife motion and of feed of raw materials on fractional composition of the grinded materials, grinder productivity, and grinding specific energy capacity. Results. It is found that the change in the fractional composition of the grinded product occurs when the speed of the rotor knives increases. Optimal range of knife speed for producing the product of the required fractional composition is 55‒75 m/s. The increase in the speed leads to increasing productivity, but is accompanied by the growth of specific power intensity. If the rotor speed is constant, the increase of raw material feed increases the grinder productivity, but only up to a certain value. After that, the productivity decreases because of excessive filling of the working chamber with raw materials and clogging of the grates. For each value of the knife speed, there is an optimal feed that ensures the maximum productivity. High values of knife speed lead to significant energy intensity of the process and overgrinding of raw materials. Therefore, the optimal range of knife speed is 55‒65 m/s. Discussion and Conclusion. Effective grinding of raw materials is achieved through lower energy capacity of grinding process and absence of grate clogs resulted from separating particles from the surface of plants to be grinded.

2020 ◽  
Vol 29 (11) ◽  
pp. 45-49
Author(s):  
L.N. Fedyanina ◽  
◽  
E.S. Smertina ◽  
V.A. Lyakh ◽  
A.E. Elizarova ◽  
...  

The article considers the problem of improving the range of confectionery from the standpoint of use plant materials of satisfaction by consumer demand in dieteticpreventive foods. The analysis of domestic and foreign scientific literature on promising directions of improving the range of dietetic-preventive confectionery is given. It is noted that in the recipes for flour confectionery introduced from non-traditional raw materials containing dietary fiber.


2013 ◽  
Vol 59 (No. 3) ◽  
pp. 98-104 ◽  
Author(s):  
P. Vaculík ◽  
J. Maloun ◽  
L. Chládek ◽  
M. Přikryl

Grinding or crushing hard raw materials is usually a primary operation which precedes the follow-up technological processes in a number of industrial sectors. A great variety of machines using different principles of fragmentation are employed in the technology of pulverization. The food industry uses roller mills, in which the main process is the shear grinding. In the animal feed industry impact machines known as hammer mills are often used. In recent years, mills have been employed that use their frontal edges for grinding or crushing during the rotation of one of two adjacent discs. The modern design disc machines used for grinding grain have resulted from long development and their operation has a relatively low noise level with reduced dust. The separation process that occurs in the gap between the active edges of the discs can be described as shear grinding and is currently the subject of attention which is focused on the specific energy consumption and fractional composition of the product of grinding.  


Author(s):  
Grażyna Kowalska

The presented study was aimed at the determination of the level of contamination with heavy metals (Cd, Pb, As, and Hg) in 240 samples of plant materials, i.e., herbal raw materials, spices, tea, and coffee. Moreover, a probabilistic risk assessment (noncarcinogenic and carcinogenic risks) was estimated by models including target hazard quotient (THQ) and cancer risk (CR). The samples were subjected to microwave mineralisation with the use of HNO3 (65%), while the determination of the content of the elements was performed with the use of inductively coupled plasma mass spectrometer (ICP–MS) and a mercury analyser. The element which was characterised by the highest level of accumulation in the analysed samples was lead (from 0.010 to 5.680 mg/kg). Among the heavy metals under analysis, the lowest concentration was noted in the case of mercury (from 0.005 to 0.030 mg/kg). A notably higher level of contamination with heavy metals was noted in the analysed samples of herbs and spices (0.005–5.680 mg/kg), compared to samples of tea and coffee (0.005–0.791 mg/kg). According to the guidelines of the World Health Organisation (WHO) concerning the limits of contamination of samples of herbal raw materials with heavy metals, lead levels exceeding the limits were only noted in 24 samples of herbs (18%). In all of the analysed samples of spices, tea, and coffee, no instances of exceeded limits were noted for any of the analysed heavy metals. The values of TTHQmax (in relation to the consumption of the analysed products) were as follows: up to 4.23 × 10−2 for spices, up to 2.51 × 10−1 for herbs, up to 4.03 × 10−2 for China tea, and up to 1.25 × 10−1 for roasted coffee beans. As the value of THQ ≤1, there is no probability of the appearance of undesirable effects related to the consumption of the analysed group of raw materials and products of plant origin. The CR value for As (max. value) was 1.29 × 10−5, which is lower than the maximum acceptable level of 1 × 10−4 suggested by United States Environmental Protection Agency (USEPA).


Author(s):  
Karl V. Hoose ◽  
Eric E. Shorey

The traditional reciprocating I.C. engine has evolved to a point where significant improvements in thermal efficiency and specific power are not expected. Modifications to existing engines may prove to be difficult and expensive while resulting in only marginal gains. In addition, most modifications result in added components that often increase cost and decrease reliability of the system as a whole. For applications requiring major advances in performance, such as unmanned vehicles, meeting mission requirements will likely stem from a revolutionary rather than an evolutionary engine design. The slider crank mechanism is a major impediment to the traditional reciprocating I.C. engine. Although this mechanism has been used for the past 100 years, it is very wasteful of the available energy supplied by the combustion process, where piston-liner interactions from this arrangement accounts for 50–70% of the total friction losses in this engine design. Eliminating the slider crank could significantly reduce friction losses and provide additional benefits that can increase fuel conversion efficiency. The HiPerTEC engine is an opposed, free-piston engine arranged in a toroidal configuration with two counter reciprocating sets of pistons. The counter reciprocating masses eliminate the vibration found in linear free-piston engines. The HiPerTEC employs a unique shared volume configuration where the swept volume is twice the physical cylinder volume. This attribute offers a significant increase in specific power, while the free-piston characteristics provide for substantial gains in thermodynamic cycle efficiency. An eight cylinder/chamber arrangement offers balanced operation in both two and four-stroke cycle modes to allow for a wide operating envelope. The final HiPerTEC configuration will require advanced materials to address lubrication and cooling requirements. This paper discusses the HiPerTEC design, operating characteristics, development progress to date, and the challenges that lie ahead.


2020 ◽  
Vol 3 ◽  
pp. 38-48
Author(s):  
Victoriya Gnitsevych ◽  
Tatiana Yudina ◽  
Yuliia Honchar ◽  
Olena Vasylieva ◽  
Liudmyla Diachuk

This study developed a technology of low-lactose semi-finished products, based on fermented whey and pumpkin pulp puree, and offered a possibility of its use in the technology of structured culinary products. This research carried out the required substantiation of the methods of preliminary processing of raw materials, and studied the technological properties and structure of model compositions with their use. During the experiment, a number of studies were carried out, which substantiated the method and modes of condensation of whey, and provided a comparative analysis of the homogeneity of lactose-free and lactose-containing samples of whey under various modes of condensation. The study obtained the results of calculations of the equivalent diameter of the studied samples of lactose-containing and low-lactose whey, condensed by the contact method and in vacuum. It was found, that the structure is homogeneous at a number average crystal diameter of up to 5 μm. The restriction is valid for CLLWV with a calculated diameter of about 3.84 μm with a coefficient of variation of 1.35 % with an increase of 10,000 times. The study revealed the alternation of smooth and granular sections of the micron level (0.1 ... 5 μm) in the structure of the studied low-lactose semi-finished product with an increase of 300 times. It was determined, that the extremum of the differential curve of the particle size distribution of CLLWV corresponds to the number average crystal diameter of 3.84 μm. It was established, that the most homogeneous fractional composition is inherent in the studied sample of CLLWV, for which the values of fraction diameters are in the range from 1.46 μm to 4.96 μm. The optimal ratio of the components of the model CLLWV: FPPP system was determined as 70 % to 30 % respectively. With this composition, the model system is characterized by the formation of protein-pectin complexes, which is confirmed by microscopy with a magnification of 90 times


2020 ◽  
pp. 303-308
Author(s):  
Edkham Shukriyevich Akbulatov ◽  
Aleksey Viktorovich Lyubyashkin ◽  
Tat'yana Vasil'yevna Ryazanova ◽  
Yuriy Davydovich Alashkevich ◽  
Elena Vladimirovna Isaeva ◽  
...  

A special issue of the journal "Chemistry of Plant Raw Materials" published on the 65th anniversary of the department "Chemical Technology of Wood and Biotechnology", the 90th anniversary of the Siberian State Technological University and the 60th anniversary of the Siberian State Aerospace University. The combination of the two largest and socio-economically significant universities ensured the creation in 2016 of the Reshetnev Siberian State University of science and technology. This is the first supporting university in Eastern Siberia, providing training for highly qualified specialists in more than 100 programs for the forestry, woodworking and chemical industries, aviation and space industry, mechanical engineering, scientific and financial organizations, international and Russian business structures, and the media. The introductory article presents a brief historical excursion, the main directions and prospects of scientific activity of the department “Chemical technology of wood and biotechnology”. They are related to solving the problem of deep complex processing of plant materials with the involvement of modern biological and chemical technologies.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
K. Gafurov ◽  
B. Muhammadiev ◽  
Sh. Mirzaeva ◽  
F. Kuldosheva

The unique properties of supercritical carbon dioxide as a solvent are widely used for extraction. In supercritical media, the dissolution of molecules of various chemical nature is possible. The purpose of this investigation was to study the extraction process and obtain extracts from valuable regional plant materials by applying CO2 extraction under pre- and supercritical conditions. The objects of research were: ground seeds of melon, pumpkin and licorice roots, as well as mint leaves, mulberry and jida flowers. For extraction, a laboratory setup was used that allows extraction when the CO2 is supplied by a high-pressure plunger pump in the sub- and supercritical state using a heat pump. The pressure range is 3-15 MPa, temperatures 295–330 K, and the volumetric flow rate above the critical CO2 is 800–900 g. Experiments with ground seeds of melon and pumpkin showed that as a result of 4 sequentially performed extraction cycles on a single load with supercritical CO2 parameters ( 315–330 K; 3–7.5 MPa) the decrease in the mass of melon seeds was 90 g (pumpkins 80 g). During the total extraction time (2.5 hours), 20 kg of CO2 were pumped through the reactor (25 l at 290 K and 6.8 MPa), while the average oil content in the extract was 4 g per 1 kg of CO2 (3.0 g per 1 l of SС-CO2) In experiments with jida flowers, the maximum amount of solid extractable substance (2% by weight of the raw material) was obtained at a temperature in the extractor of 308 K and a pressure of 7.5 MPa. Upon extraction under critical conditions in collection 2, the liquid phase was absent; only a yellow-green paste was released in it. According to the results of experiments with mint leaves, the maximum yield of a greenish liquid was observed at T = 315 K and P = 4 MPa., Mulberry - at T = 306 K and P = 6.0 MPa. The results of the extraction of oils and extracts from ground seeds of melon, pumpkin and licorice roots, as well as mint leaves, mulberries and jida flowers confirm that the maximum yield of the extracted substance is achieved with supercritical CO2 parameters in the extractor (310 K, 7.5 MPa). When liquid CO2 is extracted (300 K and 6-8 MPa), up to 2% of a yellow substance is extracted, which does not differ in appearance from a supercritical extract.


2020 ◽  
Vol 8 (02) ◽  
pp. 293-299
Author(s):  
Otoide J. E.* ◽  
Ihinmikaiye, S. O. ◽  
Otoide, T. F.

The possibility of creating wealth in pulp and paper industry from the underutilized dry matters of the leaf sheaths of the pseudostem (Musa paradisiaca and M. sapientum), leaf stalk (Carica papaya) and stems (Panicum maximum and Andropogon tectorum) have been established from the anatomical parameters and indexes (fibre lengths and diameters, lumen width, cell wall thickness, Runkels ratio, flexibility coefficient (%) and slenderness ratio) of the fibres using standard procedures. Results obtained revealed that the Runkels ratio of the fibres in the five dry matters were 0.60, 0.44, 0.40, 0.87 and 0.93 for Musa sapientum, M. paradisiaca, Carica papaya, Panicum maximum and Andropogon tectorum respectively. These values, each been less than 1 (˂ 1) recommends each of the dry matters as suitable alternative source of raw materials for pulp and paper production industry. It was recommended that these dry plant materials be henceforth harnessed as alternative sources of raw materials for pulp and paper production industry as another means of wealth creation instead of allowing them to waste and cause environmental nuisance.


2020 ◽  
Vol 61 (1) ◽  
pp. 133-139
Author(s):  
Alexander E. Panasenko ◽  
◽  
Lyudmila A. Zemnukhova ◽  
Nicolay P. Shapkin ◽  
◽  
...  

To isolate silicon-containing products from plant materials, the reaction of interaction of rice husks with triethanolamine and ethylene glycol have been investigated. The effect of pretreatment of raw materials and the reaction conditions on the yield of soluble products containing silicon has been studied. It has been shown that the highest enrichment of rice husks with silicon occurs upon its treatment with concentrated hydrochloric acid and the Schweitzer's reagent. The highest degree of silicon extraction (69%) was achieved at using native rice husks and vanadyl acetylacetonate as a catalyst. The resulting solution contained silicon in the form of silatrane fragments. In order to isolate a silicon-containing product from the ethylene glycol solution, which would have the prospect of practical use and the maximum silicon yield, the heterofunctional polycondensation method was applied. It has appeared to be possible to isolate solid products using acetylacetonates of trivalent and tetravalent metals, which formed metal siloxanes. The structure of the obtained compounds has been confirmed by the element and X-ray diffraction analysis, as well as by the IR spectroscopy. When using rice husk chaffs as a silicon source, the product of the reaction with ethylene glycol and triethanolamine has appeared to be an irregular copolymer comprising amorphous silicon dioxide fragments and cyclic fragments similar in structure to that of silatranes. The application of metal acetylacetonates has made it possible to isolate silicon derivatives in the form of organometallic siloxanes. Тhe yield of metalsiloxanes increased in the sequence Zr < Fe < Al. Apparently, this was due to formation of lattice structures in the case of trivalent aluminum and iron, while zirconium had two remaining acetylacetonate groups and, in this case, its functionality was lower than for trivalent metals, which was confirmed by the spectral data.


Sign in / Sign up

Export Citation Format

Share Document