scholarly journals Physiological responses of Vicia faba to copper toxicity

Author(s):  
S. Benouis ◽  
H.A. Reguieg Yssaad ◽  
E.H. Bouziani ◽  
I. Khedim

Abstract. Copper plays an important role in multiple plant physiological processes including photosynthesis and protein synthesis. Excess copper in tissues leads to physiological and biochemical disturbances. In order to determine the physiological response of Vicia faba L. to copper toxicity, two varieties (Sidi Aïch and Super Aguadulce) were grown in a substrate of sand and compost (3V/V) and contaminated by different doses of Cu (0, 80, 160, 240, 320, 400 mg kg-1). Dose rates ≥160 mg kg-1 led to the accumulation of copper in roots and shoots, in turn leading to decreases in photosynthetic activity and protein content and to the accumulation of proline, a stress indicator, and soluble sugars.

2005 ◽  
Vol 17 (1) ◽  
pp. 145-156 ◽  
Author(s):  
Inmaculada Yruela

Copper is an essential metal for normal plant growth and development, although it is also potentially toxic. Copper participates in numerous physiological processes and is an essential cofactor for many metalloproteins, however, problems arise when excess copper is present in cells. Excess copper inhibits plant growth and impairs important cellular processes (i.e., photosynthetic electron transport). Since copper is both an essential cofactor and a toxic element, involving a complex network of metal trafficking pathways, different strategies have evolved in plants to appropriately regulate its homeostasis as a function of the environmental copper level. Such strategies must prevent accumulation of the metal in the freely reactive form (metal detoxification pathways) and ensure proper delivery of this element to target metalloproteins. The mechanisms involved in the acquisition of this essential micronutrient have not been clearly defined although a number of genes have recently been identified which encode potential copper transporters. This review gives a briefly overview of the current understanding of the more important features concerning copper toxicity and tolerance in plants, and brings information of recent findings on copper trafficking including copper detoxification factors, copper transporters and copper chaperones.


2018 ◽  
Vol 10 ◽  
pp. 01009
Author(s):  
Sławomir Kocira ◽  
Agnieszka Sujak ◽  
Tomasz Oniszczuk ◽  
Agnieszka Szparaga ◽  
Mariusz Szymanek ◽  
...  

Application of biostimulants instigates many physiological processes that enhance nutrition efficiency, abiotic stress tolerance, and quality traits of crops, regardless of their nutrient content. One of such preparations is Atonik which contains nitrophenol compounds naturally occurring in plant cells. Several studies have confirmed its beneficial effect on the growth, development, and improved metabolic activity of plants. Therefore, it seems advisable to investigate the effect of Atonik preparation on the photosynthetic activity of Moldavian dragonhead (Dracocephalum moldavica L.). The reported study was carried out in 2014 in Perespa, Poland. Over the growing season, Atonik was foliar-applied at a dose of 0.3 L/ha (0.1%) and 0.6 L/ha (0.2%) by single and double spraying of plants. Chlorophyll content and nitrogen status (N) were estimated by a Chlorophyll Meter SPAD-502 Plus. The foliar application of Atonik was found to improve the efficiency of the photosynthetic apparatus and chlorophyll content in the leaves of Dracocephalum moldavica plants, but the results were dependent on biostimulant concentration and number of its applications, and on the date of measurement. To conclude, Atonik is an environmental-friendly preparation which has a positive impact on the metabolic processes of plants.


Author(s):  
A. M. Korotkova ◽  
O. V. Kvan ◽  
L. A. Bykova ◽  
O. S. Kudryavtseva ◽  
T. S. Videneeva ◽  
...  

In this article violation of the mineral metabolism of plants as a result of secondary contamination with heavy metals (HM), which at high concentrations have a toxic effect on a wide variety of physiological processes, occupies a central place in the problem of the resistance of plant organisms to unfavorable environmental factors. Nanoparticles based on iron, copper and nickel are of considerable interest. The study of the mechanisms of plant adaptation to structurally different nanometals (NM) from the position of changing a number of physiological and biochemical parameters is relevant for a more complete understanding of the adaptive capabilities of organisms in conditions of technogenic nanomaterials. Analysis of the content of photosynthetic pigments allowed the formation of consistent ideas about the selectivity of the effect of nanometals on the components of the pigment system of seedlings, depending both on the composition of the metal and on its concentration. The obtained results serve as additional evidence of the existence of selectivity in the activation of a particular reaction of the plant's antioxidant system, determined by the nature of the nanomaterial. However, a change in the level of ROS in the presence of Ni? and Cu? can be attributed to the non-specific response of plants, since similar changes are characteristic of a variety of stresses of plants and in most cases require further research. In this aspect the main "target" of the action of LF metals was the root system of plants, which determined the interest in identifying mechanisms of phytotoxicity with an emphasis on the study of cell damage in this part of plants.


2019 ◽  
Vol 13 (2) ◽  
pp. 151-160
Author(s):  
Diana Mateus-Cagua ◽  
Gustavo Rodríguez-Yzquierdo

Biostimulants can potentially improve plant growth and development, modifying physiological processes. This study evaluated the effect of four biostimulants on the growth of ‘Hartón’ plantain plants and the leaf gas exchange during the vegetative phase. This experiment was developed on a plantain farm’s nursery in Fuente de Oro (Colombia) with a randomized complete block design with four replicates. The treatments were the biostimulants: Bactox WP®: Bacillus subtilis (Bs); Baliente®: Bacillus amyloliquefaciens (Ba); Tierra Diatomeas®: silicon dioxide (Si); Re-Leaf®: salicylic acid (SA) and the control (water). All products had a positive effect on the accumulation of total dry matter (DM) (between 58.4 and 21.9%) and on the photosynthetic activity (a maximum of 110 and 24.3% in first and second evaluation), as compared to the control, while no differences were found (P>0.05) for the foliar emission rate and chlorophyll content between the treatments. The plants treated with Bs had the greatest DM accumulation at the end of the study and a constant, high photosynthetic activity. All the while Bs, Ba and Si managed to stimulate greater early photosynthetic activity. According to the results, the use of these biostimulants during the vegetative phase had an effect on the physiological processes that enhance DM accumulation in plantain plants, which could be potentially useful for the transplanting stage and increase the reserves used during their establishment and development in the field.


Author(s):  
Nadia Chiahi ◽  
Louhichi Brinis

Wheat is an important cereal in terms of human consumption in many countries of the world. It is grown mainly in arid and semi-arid Mediterranean countries. In these areas, salinity of soils and irrigation water is one of the limiting factors in plant productivity and agricultural yield. The present work consisted in evaluating the morpho-physiological and biochemical behavior of two durum wheat varieties V1 (Gta dur), V2 (Vitron) subjected to increasing concentrations of NaCl during the germination phase and the growth phase in the laboratory. The results obtained showed several revelations in terms of morphological imbalance (leaf area, germination percentage, root length, physiological variation, decrease or increase of assimilating pigments, Relative Water Content (RWC), etc), and biochemical bioaccumulation (proline, soluble sugars, proteins and elevation of activity of CAT antioxidant enzymes). At the level of treatments, the development of the seedlings of two varieties was better on soil salty and sprinkled with water than in the presence of saline concentrations. A certain tolerance of the two genotypes was particularly marked in the Vitron variety against salt stress.


2016 ◽  
Vol 68 (4) ◽  
pp. 201-212 ◽  
Author(s):  
Heba I. Mohamed ◽  
Esraa A. Elsherbiny ◽  
Magdi T. Abdelhamid

1996 ◽  
Vol 28 (4) ◽  
pp. 355-365 ◽  
Author(s):  
L. Silberstein ◽  
B. Z. Siegel ◽  
S. M. Siegel ◽  
A. Mukhtar ◽  
M. Galun

AbstractXanthona parietina thalli were collected from a ‘clean-air’ location and from a polluted area. Ramalina duriaei thalli were collected from the same ‘clean-air’ location and some thalli were transplanted to air polluted locations, where R. duriaei no longer occurs. The effects of air contaminants on these two lichens were compared under controlled laboratory conditions and in field experiments. Air contaminants and exposure to bisulphite ions had little or no damaging effect on X. parietina, whereas severe damage was caused to R. duriaei, as judged by chlorophyll degradation, autofluorescence of photobionts, photosynthetic activity, membrane integrity and ATP content. The different responses presented confirm the sensitivity of R. duriaei and resistance of X. parietina to air pollution.


1960 ◽  
Vol 7 (1) ◽  
pp. 79-85 ◽  
Author(s):  
J. R. K. Savage ◽  
G. J. Neary ◽  
H. J. Evans

The observation was made previously that the reduction in radiosensitivity in Vicia faba (as measured by postirradiation root growth) by prolonging the exposure time from about 10 minutes to 24 hours is much less marked at 3°C. than at 19°C. If chromosome damage is mainly responsible for the reduced root growth, this observation might be explained by a smaller drop in the "two-hit" aberration component, resulting from an increased time for which breaks are available for rejoining at 3°C. This hypothesis was tested by comparing chromatid aberration frequencies in root meristem cells produced by 105 rads of 60Co γ rays, given at dose rates of 19.4 and 0.073 rads per minute. Beans were maintained in aerated water at 2°C. prior to and during irradiation, and at this temperature the rate of development of cells was such that the two different exposure times both occupied a period during which the cell sensitivity was approximately constant. Immediately subsequent to irradiation, the roots were returned to 19°C. and examined cytologically. All chromatid aberrations were less frequent after low dose rate treatment, but only the chromatid interchange reduction was significant. The average time for which breaks are available for reunion, calculated from Lea's G function, was found to be 12 hours (95 per cent C.L. 6 to 24 hours).


2010 ◽  
Vol 113-116 ◽  
pp. 1195-1198 ◽  
Author(s):  
Min Qu ◽  
Yan Ming Zhang

Oil pollution is seriously harmful to soil environment and human health. In order to verify the physiological and biochemical response of phytoremediation to oil-contaminated soil and test the relationship between the soil activity and the rate of oil degradation, in the present study, alfalfa, ryegrass, marigold and cosmos are used as the test plants. Through observing the morphological differences, such as germination rate, seedling height and root length, of four plant species under different concentrations of oil-contaminated soil, and measuring the physiological and biochemical indexes, which including MDA, soluble sugars, free proline, soluble protein and chlorophyll etc, and the change of oil degradation rate during the growth process of plant, results proved that plants could improve self-protection capabilities to resist the oil pollution by accumulating osmoregulation substances when they were subject to oil-contaminated stress. By analyzing the changes of polyphenol oxidase, it indicated that the plants can regulate enzyme activity in the oil-contaminated soil, and enhanced it. Comprehensive comparison of the above indexes, we draw a conclusion that alfalfa is an ideal species to repair the oil-contaminated soiland Marigold is the second candidate. In general, our work will lay the theoretic basis for phytoremediation technology research.


Physiology ◽  
2003 ◽  
Vol 18 (4) ◽  
pp. 175-178 ◽  
Author(s):  
Gerrit Westera ◽  
P. August Schubiger

Tracer technology makes it possible to observe physiological and biochemical processes in the living organism in a dynamic mode. Positron emission tomography adds the use of chemically unchanged biomolecules and of quantification. This opens up fascinating possibilities for both fundamental research and routine diagnostic applications.


Sign in / Sign up

Export Citation Format

Share Document