scholarly journals Signaling Pathways in Cervical Cancer Chemoresistance: Are microRNAs and Long-Noncoding RNAs the Main Culprits?

Author(s):  
Seyyed Reza Mousavi ◽  
Nima Hemmat ◽  
Hossein Bannazadeh Baghi ◽  
Afshin Derakhshani ◽  
Stefania Tommasi ◽  
...  

Cervical cancer is known as one of the most important cancers in women worldwide. Chemotherapy is a standard treatment for advanced/recurrent cervical cancer in which the prognosis of the disease is really poor and the 1-year survival chance in these patients is maximally 20%. However, resistance to anticancer drugs is a major problem in treating cancer. Cervical cancer stem cells are considered as a fundamental cause of chemo and radio-resistance and also relapse after primary successful treatment. Signaling pathways include a wide range of molecular mechanisms contribute to drug resistance. Recently, microRNAs (miRNAs) are announced as a group of molecular biomarkers involving in response to chemotherapy in cancer patients. As the miRNAs, there are some long non-coding RNAs (LncRNAs) which their aberrant expression is considered as a biomarker for monitoring chemoresistance. In this review, we summarized current reports about the involvement of signaling pathways during chemoresistance in cervical cancer. Then, genes that have been demonstrated their involvement during drug resistance in cervical cancer were tabulated. Further, miRNAs that have been reported as biomarkers during treatment are listed. By bioinformatic analysis, we predictedmiR-335-5p and miR-16-5p as the most potential biomarkers for monitoring resistance to chemotherapy. Finally, long non-coding RNAs that have been introduced in recent studies as novel biomarkers during the response to chemotherapy were mentioned.

2020 ◽  
Vol 27 ◽  
Author(s):  
Ramarao Malla ◽  
Mohammad Amjad Kamal

: Cervical cancer (CC) is the fourth leading cancer in women in the age group 15-44 globally. Experimental as well as epidemiological studies identified that type16 and 18 HPV cause 70% of precancerous cervical lesions as well as cervical cancer worldwide by bringing about genetic as well as epigenetic changes in the host genome. The insertion of the HPV genome triggers various defense mechanisms including the silencing of tumor suppressor genes as well as activation of oncogenes associated with cancer metastatic pathway. E6 and E7 are small oncoproteins consisting of 150 and 100 amino acids respectively. These oncoproteins affect the regulation of the host cell cycle by interfering with p53 and pRb. Further these oncoproteins adversely affect the normal functions of the host cell by binding to their signaling proteins. Recent studies demonstrated that E6 and E7 oncoproteins are potential targets for CC. Therefore, this review discusses the role of E6 and E7 oncoproteins in metastasis and drug resistance as well as their regulation, early oncogene mediated signaling pathways. This review also uncovers the recent updates on molecular mechanisms of E6 and E7 mediated phytotherapy, gene therapy, immune therapy, and vaccine strategies as well as diagnosis through precision testing. Therefore, understanding the potential role of E6/E7 in metastasis and drug resistance along with targeted treatment, vaccine, and precision diagnostic strategies could be useful for the prevention and treatment of cervical cancer.


2021 ◽  
Vol 27 ◽  
Author(s):  
Wen Xu ◽  
Bei Wang ◽  
Yuxuan Cai ◽  
Jinlan Chen ◽  
Xing Lv ◽  
...  

Background: Long non-coding RNAs (lncRNA) have been identified as novel molecular regulators in cancers. LncRNA ADAMTS9-AS2 can mediate the occurrence and development of cancer through various ways such as regulating miRNAs, activating the classical signaling pathways in cancer, and so on, which have been studied by many scholars. In this review, we summarize the molecular mechanisms of ADAMTS9-AS2 in different human cancers. Methods: Through a systematic search of PubMed, lncRNA ADAMTS9-AS2 mediated molecular mechanisms in cancer are summarized inductively. Results: ADAMTS9-AS2 aberrantly expression in different cancers is closely related to cancer proliferation, invasion, migration, inhibition of apoptosis. The involvement of ADAMTS9-AS2 in DNA methylation, mediating PI3K / Akt / mTOR signaling pathways, regulating miRNAs and proteins, and such shows its significant potential as a therapeutic cancer target. Conclusion: LncRNA ADAMTS9-AS2 can become a promising biomolecular marker and a therapeutic target for human cancer.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1860
Author(s):  
Andrew P. Carlson ◽  
William McKay ◽  
Jeremy S. Edwards ◽  
Radha Swaminathan ◽  
Karen S. SantaCruz ◽  
...  

Background: Signaling pathways mediated by microRNAs (miRNAs) have been identified as one of the mechanisms that regulate stroke progression and recovery. Recent investigations using stroke patient blood and cerebrospinal fluid (CSF) demonstrated disease-specific alterations in miRNA expression. In this study, for the first time, we investigated miRNA expression signatures in freshly removed human stroke brain tissue. Methods: Human brain samples were obtained during craniectomy and brain tissue resection in severe stroke patients with life-threatening brain swelling. The tissue samples were subjected to histopathological and immunofluorescence microscopy evaluation, next generation miRNA sequencing (NGS), and bioinformatic analysis. Results: miRNA NGS analysis detected 34 miRNAs with significantly aberrant expression in stroke tissue, as compared to non-stroke samples. Of these miRNAs, 19 were previously identified in stroke patient blood and CSF, while dysregulation of 15 miRNAs was newly detected in this study. miRNA direct target gene analysis and bioinformatics approach demonstrated a strong association of the identified miRNAs with stroke-related biological processes and signaling pathways. Conclusions: Dysregulated miRNAs detected in our study could be regarded as potential candidates for biomarkers and/or targets for therapeutic intervention. The results described herein further our understanding of the molecular basis of stroke and provide valuable information for the future functional studies in the experimental models of stroke.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ying Liu ◽  
Xiang Ao ◽  
Guoqiang Ji ◽  
Yuan Zhang ◽  
Wanpeng Yu ◽  
...  

Gastric cancer (GC) is one of the most common malignant tumors of digestive systems worldwide, with high recurrence and mortality. Chemotherapy is still the standard treatment option for GC and can effectively improve the survival and life quality of GC patients. However, with the emergence of drug resistance, the clinical application of chemotherapeutic agents has been seriously restricted in GC patients. Although the mechanisms of drug resistance have been broadly investigated, they are still largely unknown. MicroRNAs (miRNAs) are a large group of small non-coding RNAs (ncRNAs) widely involved in the occurrence and progression of many cancer types, including GC. An increasing amount of evidence suggests that miRNAs may play crucial roles in the development of drug resistance by regulating some drug resistance-related proteins as well as gene expression. Some also exhibit great potential as novel biomarkers for predicting drug response to chemotherapy and therapeutic targets for GC patients. In this review, we systematically summarize recent advances in miRNAs and focus on their molecular mechanisms in the development of drug resistance in GC progression. We also highlight the potential of drug resistance-related miRNAs as biomarkers and therapeutic targets for GC patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jing Ke ◽  
Chunming Gu ◽  
Heyan Zhang ◽  
Yang Liu ◽  
Wenhao Zhang ◽  
...  

Purpose. Cervical cancer is the fourth most common cancer in women worldwide and is the main cause of cancer-related deaths in women. Cisplatin (DDP) is one of the major chemotherapeutic drugs for cervical cancer patients. But, drug resistance limits the effectiveness of cancer therapy. Nucleolin (NCL) is a nucleocytoplasmic multifunctional protein involved in the development of cancer. It has been reported that NCL may be a potential target for modulation of drug resistance. However, the precise molecular mechanisms are poorly understood. Materials and Methods. Human cervical cancer Hela cells and their cisplatin-resistant cell line Hela/DDP were used in this study. The protein level of NCL in cervical cancer cells was measured by western blot analysis. Hela cells and Hela/DDP cells were transfected with NCL overexpression plasmid or NCL siRNA separately. MTT and EdU assay were performed to evaluate the cell viability and sensitivity to cisplatin. The drug efflux function of MDR1 protein was assessed by intracellular rhodamine-123 accumulation assay.The promoter activity of MDR1 was assessed by using a dual-luciferase reporter assay. Results. We found that the protein level of NCL was elevated in Hela/DDP cells. Overexpression of NCL increased cervical cancer cell proliferation and attenuated the sensitivity to cisplatin. Overexpression of NCL increased Multidrug resistance (MDR1) gene expression and drug efflux. Our results demonstrated that NCL was highly related with cisplatin resistance in cervical cancer. NCL played an important role in MDR1 gene transcription through regulation of the transcription factor YB1. Conclusion. Our findings revealed the novel role of NCL in cisplatin-resistant cervical cancer and NCL may be a potential therapeutic target for chemoresistance.


2018 ◽  
Vol 19 (7) ◽  
pp. 2108 ◽  
Author(s):  
Elisabetta Rubini ◽  
Fabio Altieri ◽  
Silvia Chichiarelli ◽  
Flavia Giamogante ◽  
Stefania Carissimi ◽  
...  

Background: Organochlorine pesticides (OCPs) are widely distributed in the environment and their toxicity is mostly associated with the molecular mechanisms of endocrine disruption. Among OCPs, particular attention was focused on the effects of β-hexaclorocyclohexane (β-HCH), a widely common pollutant. A detailed epidemiological study carried out on exposed population in the “Valle del Sacco” found correlations between the incidence of a wide range of diseases and the occurrence of β-HCH contamination. Taking into account the pleiotropic role of the protein signal transducer and activator of transcription 3 (STAT3), its function as a hub protein in cellular signaling pathways triggered by β-HCH was investigated in different cell lines corresponding to tissues that are especially vulnerable to damage by environmental pollutants. Materials and Methods: Human prostate cancer (LNCaP), human breast cancer (MCF-7 and MDA-MB 468), and human hepatoma (HepG2) cell lines were treated with 10 μM β-HCH in the presence or absence of specific inhibitors for different receptors. All samples were subjected to analysis by immunoblotting and RT-qPCR. Results and Conclusions: The preliminary results allow us to hypothesize the involvement of STAT3, through both its canonical and non-canonical pathways, in response to β-HCH. Moreover, we ascertained the role of STAT3 as a master regulator of energy metabolism via the altered expression and localization of HIF-1α and PKM2, respectively, resulting in a Warburg-like effect.


Planta ◽  
2020 ◽  
Vol 252 (5) ◽  
Author(s):  
Li Chen ◽  
Qian-Hao Zhu ◽  
Kerstin Kaufmann

Abstract Main conclusion Long non-coding RNAs modulate gene activity in plant development and stress responses by various molecular mechanisms. Abstract Long non-coding RNAs (lncRNAs) are transcripts larger than 200 nucleotides without protein coding potential. Computational approaches have identified numerous lncRNAs in different plant species. Research in the past decade has unveiled that plant lncRNAs participate in a wide range of biological processes, including regulation of flowering time and morphogenesis of reproductive organs, as well as abiotic and biotic stress responses. LncRNAs execute their functions by interacting with DNA, RNA and protein molecules, and by modulating the expression level of their targets through epigenetic, transcriptional, post-transcriptional or translational regulation. In this review, we summarize characteristics of plant lncRNAs, discuss recent progress on understanding of lncRNA functions, and propose an experimental framework for functional characterization.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sung-Hyun Kim ◽  
Key-Hwan Lim ◽  
Sumin Yang ◽  
Jae-Yeol Joo

AbstractBrain tumors are associated with adverse outcomes despite improvements in radiation therapy, chemotherapy, and photodynamic therapy. However, treatment approaches are evolving, and new biological phenomena are being explored to identify the appropriate treatment of brain tumors. Long non-coding RNAs (lncRNAs), a type of non-coding RNA longer than 200 nucleotides, regulate gene expression at the transcriptional, post-transcriptional, and epigenetic levels and are involved in a variety of biological functions. Recent studies on lncRNAs have revealed their aberrant expression in various cancers, with distinct expression patterns associated with their instrumental roles in cancer. Abnormal expression of lncRNAs has also been identified in brain tumors. Here, we review the potential roles of lncRNAs and their biological functions in the context of brain tumors. We also summarize the current understanding of the molecular mechanisms and signaling pathways related to lncRNAs that may guide clinical trials for brain tumor therapy.


10.2196/31150 ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. e31150
Author(s):  
Fatemah O F O Alshammari ◽  
Yousef M Al-saraireh ◽  
Ahmed M M Youssef ◽  
Yahya M Al-Sarayra ◽  
Hamzeh Mohammad Alrawashdeh

Background Current standard treatments for patients with recurrent cervical cancer are not very effective and are associated with severe toxicity. Recently, the rational approach for the discovery of new therapies for cervical cancer is based on the alterations in the molecular biology of cancer cells. One of the emerging molecular changes in cancer cells is the aberrant expression of cytochrome P450 1B1 (CYP1B1). This unique enzyme has been reported to be selectively overexpressed in several cancers. Objective The aim of this study was to examine CYP1B1 expression in cervical cancers and to assess the enzyme’s relationship with several clinicopathological features. Methods Immunohistochemistry was performed to examine CYP1B1 expression in 100 patient samples with cervical cancer and 10 patient samples with normal healthy cervical tissues. Results CYP1B1 was expressed in the majority of the cervical cancer samples (91/100, 91.0%) but not in normal healthy cervical samples. The difference in the expression of CYP1B1 between healthy and tumorous cervical tissues was significant (P=.01). Moreover, the frequency of CYP1B1 expression was found to be significantly higher in patients with advanced grades of the disease (P=.03) and in patients having metastasis to the lymph nodes (P=.01). Surprisingly, there was a significantly higher expression of CYP1B1 in patients with a high prevalence of human papilloma virus 16/18 (P=.04). Conclusions The differential profile of CYP1B1 expression between cervical cancer tissues and normal cervical tissues suggests that CYP1B1 may be used as a target for future therapeutic exploitations.


2020 ◽  
Author(s):  
Shan Feng ◽  
Hongcheng Fang ◽  
Xia Liu ◽  
Yuhui Dong ◽  
Qingpeng Wang ◽  
...  

Abstract Background: Walnut anthracnose caused by Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. is an important walnut production problem in China. Although the long non-coding RNAs (lncRNAs) are important for plant disease resistance , the molecular mechanisms underlying resistance to C. gloeosporioides in walnut remain poorly understood.Results: The anthracnose-resistant F26 fruits from the B26 clone and the anthracnose-susceptible F423 fruits from the 4-23 clone of walnut were used as the test materials. Specifically, we performed a comparative transcriptome analysis of F26 and F423 fruit bracts to identify differentially expressed LncRNAs (DELs) at five time-points (tissues at 0 hpi, pathological tissues at 24 hpi, 48 hpi, 72 hpi, and distal uninoculated tissues at 120 hpi). Compared with F423, a total of 14525 DELs were identified, including 10645 upregulated lncRNAs and 3846 downregulated lncRNAs in F26. The number of upregulated lncRNAs in F26 compared to in F423 was significantly higher at the early stages of C. gloeosporioides infection. A total of 5 modules related to disease resistance were screened by WGCNA and the target genes of lncRNAs were obtained. Bioinformatic analysis showed that the target genes of upregulated lncRNAs were enriched in immune-related processes during the infection of C. gloeosporioides, such as activation of innate immune response, defense response to bacterium, incompatible interaction and immune system process, and enriched in plant hormone signal transduction, phenylpropanoid biosynthesis and other pathways. And 124 known target genes for 96 hub lncRNAs were predicted, including 10 known resistance genes. The expression of 5 lncRNAs and 5 target genes was confirmed by qPCR, which was consistent with the RNA-seq data.Conclusions: The results of this study provide the basis for future functional characterizations of lncRNAs regarding the C. gloeosporioides resistance of walnut fruit bracts.


Sign in / Sign up

Export Citation Format

Share Document