scholarly journals Mechanism Confirmation of Organofunctional Silanes Modified Water Glass/Polyurethane-Urea Composites for Remarkably Enhanced Mechanical Properties

Author(s):  
Yuntao Liang ◽  
Ao Gao ◽  
Yong Sun ◽  
Fuchao Tian ◽  
Weili Sun ◽  
...  

Abstract Hybrid reinforced water glass/polyurethane-urea (WG/PU) composites mainly derived from low-cost WG and polyisocyanate are produced in the presence of 3-chloropropyltrimethoxysilane (CTS). The wettability of WG on PU substrate surface is significantly improved as CTS content increases from 0.0 wt% to 3.5 wt%. Furthermore, with 2.5 wt% of CTS optimal addition, the fracture surface morphology and elemental composition of the resulting WG/PU composites are characterized, as well as mechanical properties, chemical structure and thermal properties. The results indicate that the CTS forms multiple physical and chemical interactions with the WG/PU composites to induce an optimized organic-inorganic hybrid network structure thus achieving simultaneous improvement of compressive strength, flexural strength, flexural modulus and fracture toughness of the WG/PU composites, with the improvement of 12.9%, 6.6%, 17.5% and 9.7%, respectively. Moreover, the CTS in the WG/PU composites has a significant influence on the curing process of the WG/PU composites by accelerating the rate of mass and heat transfer. Additionally, a reasonable mechanism explanation for CTS modified WG/PU composites is confirmed.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuntao Liang ◽  
Ao Gao ◽  
Yong Sun ◽  
Fuchao Tian ◽  
Weili Sun ◽  
...  

AbstractHybrid reinforced sodium silicate/polyurethane (SS/PU) composites mainly derived from low-cost SS and polyisocyanate are produced by a one-step method based on the addition of 3-chloropropyltrimethoxysilane (CTS). The wettability of SS on PU substrate surface is much improved as CTS content increases from 0.0 to 3.5 wt%. Furthermore, with 2.5 wt% of CTS optimal addition, the fracture surface morphology and elemental composition of the resulting SS/PU composites are characterized, as well as mechanical properties, chemical structure and thermal properties. The results indicate that the CTS forms multiple physical and chemical interactions with the SS/PU composites to induce an optimized organic–inorganic hybrid network structure thus achieving simultaneous improvement of compressive strength, flexural strength, flexural modulus and fracture toughness of the SS/PU composites, with the improvement of 12.9%, 6.6%, 17.5% and 9.7%, respectively. Moreover, a reasonable mechanism explanation for CTS modified SS/PU composites is confirmed. Additionally, the high interface areas of the organic–inorganic phase and the active crosslinking effect of the CTS are the main factors to determine the curing process of the SS/PU composites.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1801
Author(s):  
Rafał Oliwa ◽  
Joanna Ryszkowska ◽  
Mariusz Oleksy ◽  
Monika Auguścik-Królikowska ◽  
Małgorzata Gzik ◽  
...  

We investigated the effect of the type and amount of expandable graphite (EG) and blackcurrant pomace (BCP) on the flammability, thermal stability, mechanical properties, physical, and chemical structure of viscoelastic polyurethane foams (VEF). For this purpose, the polyurethane foams containing EG, BCP, and EG with BCP were obtained. The content of EG varied in the range of 3–15 per hundred polyols (php), while the BCP content was 30 php. Based on the obtained results, it was found that the additional introduction of BCPs into EG-containing composites allows for an additive effect in improving the functional properties of viscoelastic polyurethane foams. As a result, the composite containing 30 php of BCP and 15 php of EG with the largest particle size and expanded volume shows the largest change in the studied parameters (hardness (H) = 2.65 kPa (+16.2%), limiting oxygen index (LOI) = 26% (+44.4%), and peak heat release rate (pHRR) = 15.5 kW/m2 (−87.4%)). In addition, this composite was characterized by the highest char yield (m600 = 17.9% (+44.1%)). In turn, the change in mechanical properties is related to a change in the physical and chemical structure of the foams as indicated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1145 ◽  
Author(s):  
Jiajia Xu ◽  
Yu Zhang ◽  
Yunfang Shen ◽  
Cong Li ◽  
Yanwei Wang ◽  
...  

Thermal modification (TM) is an ecological and low-cost pretreated method to improve the dimensional stability and decay resistance of wood. This study systematically investigates the relevance between the evolution of chemical structure and the physical and mechanical properties during wood thermal modification processes. Moreover, the volatility of compounds (VOCs) was analyzed using a thermogravimetric analyzer coupled with Fourier transform infrared spectrometry (TGA-FTIR) and a pyrolizer coupled with gas chromatography/mass spectrometer (Py-GC/MS). With an increase of TM temperature, the anti-shrink efficiency and contact angle increased, while the equilibrium moisture content decreased. This result indicates that the dimensional stability improved markedly due to the reduction of hydrophilic hydroxyl (–OH). However, a slight decrease of the moduli of elasticity and of rupture was observed after TM due to the thermal degradation of hemicellulose and cellulose. Based on a TGA-FTIR analysis, the small molecular gaseous components were composed of H2O, CH4, CO2, and CO, where H2O was the dominant component with the highest absorbance intensity, i.e., 0.008 at 200 °C. Based on the Py-GC/MS analysis, the VOCs were shown to be mainly composed of acids, aldehydes, ketones, phenols, furans, alcohols, sugars, and esters, where acids were the dominant compounds, with a relative content of 37.05−42.77%.


2015 ◽  
Vol 7 (3) ◽  
pp. 97-111 ◽  
Author(s):  
K. Begum ◽  
M. A. Islam ◽  
M. M. Huque

The utilization of natural fibres as reinforcement in polymer composites has been increased significantly for their lightweight, low cost, high specific strength, modulus and biodegradable characteristic. In this present work, the mechanical properties of randomly distributed short coir-fibre-reinforced polypropylene (PP) composites have been studied as a function of fibre loading. In order to improve the composite’s mechanical properties, raw coir fibres were treated with 1% alkali (NaOH) solution. Both raw and alkali treated coir-fibre-reinforced PP composites were prepared with different fibre loadings (10, 15, 20, 25, 30 and 35 wt%) using a double roller open mixer machine and injection molding machine. The mechanical properties, such as tensile strength (TS), tensile modulus (TM), flexural strength (FS) and flexural modulus (FM) were investigated for the prepared composites. The alkali treated coir-fibre-reinforced PP composites showed better results in mechanical properties compared to untreated composites. Finally, the optical microscopic studies were carried out on fractured surfaces of the tensile test specimens, which indicated weak interfacial bonding between the fibre and the polymer.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1602
Author(s):  
Ju Heon Lee ◽  
Dong Hwi Kim ◽  
Youngjae Ryu ◽  
Kwan Hoon Kim ◽  
Seong Ho Jeong ◽  
...  

Sesame oil cakes (SOC) produced during sesame oil production can be classified as plant residues. This study aims to use SOC as a composite material for injection molding. A biocomposite containing polypropylene (PP) and SOC, namely PP/SOC, was developed and its mechanical properties were evaluated. PP/SOC is largely divided into Homo-PP/SOC (HPS) based on Homo-PP and Block-PP/SOC (BPS) based on block-PP. The specimens containing 0–50 wt% SOC were prepared through extrusion and injection molding. As a result of the evaluation, SOC acted as a reinforcement in the matrix, and HPS and BPS showed improved flexural modulus by 36.4% and 37.3% compared to the neat PP, respectively. Tensile strength, on the other hand, decreased by 58% and 55.1%, respectively. To analyze the cause of this, cross-section observation was conducted through scanning electron microscope (SEM), and phase separation and voids were confirmed to be the cause of this. Impact strength of PP/SOC tended to vary depending on the type of matrix. HPS increased by 30.9% compared to neat PP, and BPS decreased by 25%. This tendency difference appears to be the result of SOC inhibiting crystallization of PP, and it has been confirmed through x ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis. Moreover, PP/SOC can be manufactured at a low cost and is environmentally friendly because it utilizes SOC, a plant residue. It can also be applied to commercial products, such as food packaging, owing to its good moldability and improved mechanical properties.


2018 ◽  
Vol 919 ◽  
pp. 230-235 ◽  
Author(s):  
Jaroslav Maloch ◽  
Eva Hnátková ◽  
Milan Žaludek ◽  
Petr Krátký

3D printing technology enables the production of functional components in small quantities which can be used as end-use parts. The mechanical properties of the final product define its quality and determine its success or failure in a given application. One at the various additive manufacturing technologies - Fused Deposition Modelling is very often used due to its relatively low cost and the availability of 3D printers and thermoplastic materials. During the process, there are many factors that can affect the mechanical properties of the final product. The temperature of the extrusion nozzle and the layer thickness are two of the basic process parameters. The objective of this work is to investigate the effect of these two processing parameters on the final mechanical properties of the 3D printed samples from acrylonitrile butadiene styrene. Mechanical testing includes the tensile and flexural strength, as well as tensile and flexural modulus.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 356
Author(s):  
Marcin Włoch ◽  
Paulina Landowska

Bio-based fillers for the polymer composites are still interesting from the scientific and industrial point of view, due to their low cost and renewable nature. In this work partially green composites were obtained by the mixing of thermoplastic poly(ester-urethane) with the unmodified and modified (by acetylation) grinded buckwheat husks. Obtained biocomposites were characterized in the terms of their chemical structure (FTIR), microstructure (SEM), thermal stability (TGA), thermomechanical properties (DMTA), and selected mechanical properties. The results showed that introduction of grinded buckwheat husks (even if the amount is 60 wt%) permit retaining high values of tensile strength (around 8–10 MPa), but the increasing amount of applied filler is connected with the decreasing of elongation at break. It can result from good interaction between the polymer matrix and the bio-based filler (confirmed by high values of polymer matrix-filler interaction parameter determined from Pukánszky’s model for the tensile strength of composites). The applied chemical treatment results in changing of mechanical properties of filler and composites. Obtained results confirmed the possibility of using powdered buckwheat husks as filler for thermoplastic polyurethane.


2020 ◽  
Vol 35 (2) ◽  
pp. 146-157
Author(s):  
B.-L. Yu ◽  
L.-C. Jiang ◽  
K. Huang ◽  
X.-L. Liu ◽  
X.-M. Shao ◽  
...  

2019 ◽  
Vol 10 (32) ◽  
pp. 7484-7495 ◽  
Author(s):  
Huadong Yuan ◽  
Tiefeng Liu ◽  
Yujing Liu ◽  
Jianwei Nai ◽  
Yao Wang ◽  
...  

This review summarizes recent progress of biomass-derived materials in Li–S batteries. These materials are promising due to their advantages including strong physical and chemical adsorption, high abundance, low cost, and environmental friendliness.


2020 ◽  
Vol 18 (1) ◽  
pp. 1148-1166
Author(s):  
Ganjar Fadillah ◽  
Septian Perwira Yudha ◽  
Suresh Sagadevan ◽  
Is Fatimah ◽  
Oki Muraza

AbstractPhysical and chemical methods have been developed for water and wastewater treatments. Adsorption is an attractive method due to its simplicity and low cost, and it has been widely employed in industrial treatment. In advanced schemes, chemical oxidation and photocatalytic oxidation have been recognized as effective methods for wastewater-containing organic compounds. The use of magnetic iron oxide in these methods has received much attention. Magnetic iron oxide nanocomposite adsorbents have been recognized as favorable materials due to their stability, high adsorption capacities, and recoverability, compared to conventional sorbents. Magnetic iron oxide nanocomposites have also been reported to be effective in photocatalytic and chemical oxidation processes. The current review has presented recent developments in techniques using magnetic iron oxide nanocomposites for water treatment applications. The review highlights the synthesis method and compares modifications for adsorbent, photocatalytic oxidation, and chemical oxidation processes. Future prospects for the use of nanocomposites have been presented.


Sign in / Sign up

Export Citation Format

Share Document