scholarly journals Calcination Temperatures, Compositions and Antimicrobial Properties of Heterostructural ZnO–CuO Nanocomposites from Calotropis Gigantea Targeted for Skin Ulcer Pathogens

2020 ◽  
Author(s):  
G Ambarasan Govindasamy ◽  
Rabiatul Basria S.M.N. Mydin ◽  
Nor Hazliana Harun ◽  
Srimala Sreekan

Abstract An eco-friendly green route is employed for the successful synthesis of heterostructured ZnO-CuO nanocomposites using Calotropis gigantea plant and the investigation of their antimicrobial properties against skin ulcer pathogens. Binary ZnO-CuO nanocomposites prepared at calcination temperature of 300 °C exhibited superior antimicrobial effect on S. aureus, whereas the negative control sample did not show any antibacterial activities. High ZnO nanoparticles of 75 wt.% ZnO-CuO nanocomposites showed zero count of Staphylococcus aureus at a minimum inhibitory concentration of 0.625 mg/mL and minimum bactericidal concentration (MBC) of 2.5 mg/mL. Interestingly, the 75 wt.% ZnO-CuO nanocomposites exhibited strong antimicrobial activity against multi-drug resistant pathogens, with MBC ranging from 0.3125 mg/mL to 1.25 mg/mL. A time-kill assay captured a reduction in viable count from 4.3 log 10 to 1.3 log 10 after 12 h of incubation for S. aureus . Elucidating the antimicrobial activities could be useful for identifying novel ways to incorporate ZnO-CuO nanocomposites in polymers for applications in biocide materials, such as for wound dressing. Further, molecular studies are needed to explain the underlying biocidal mechanism of ZnO-CuO nanocomposites especially in the presence of Cu 2+ and Zn 2+.

2015 ◽  
Vol 10 (3) ◽  
pp. 529 ◽  
Author(s):  
Huawei Zhang ◽  
Chuanfeng Ruan ◽  
Xuelian Bai

<p>Ten fungal strains isolated from <em>Edgeworthia chrysantha</em>, one of traditional medicinal plants in China, were evaluated their antimicrobial activities against three human pathogens, <em>Escherichia coli, Staphyloccocus aureus and Candida albicans</em>, and two phytopathogens, <em>Rhizoctonia cerealis</em> and <em>Colletotrichum gloeosporioides</em>. The results indicated that most ethyl acetate extracts of fermentation broth of these fungal endophytes had stronger antimicrobial activities than their fermentation broth. Among these endophytic strains, both fermentation broth and the ethyl acetate extract of strain D showed the strongest inhibitory effects on all pathogens. Strains 5-19 and BZ also exhibited potent antibacterial activities. However, other strains had weak or no antimicrobial effect. This was the first report on the isolation and antimicrobial effects of endophytic fungi from <em>E. chrysantha</em>.   </p><p> </p>


2022 ◽  
Vol 12 (2) ◽  
pp. 790
Author(s):  
Mihaela Adriana Tița ◽  
Maria Adelina Constantinescu ◽  
Ovidiu Tița ◽  
Endre Mathe ◽  
Loreta Tamošaitienė ◽  
...  

(1) Background: The demand for healthy and nutritious food is growing worldwide. Fermented dairy products are highly valued by consumers for their health benefits. Kefir is a fermented dairy product that brings many benefits to the consumer due to its antioxidant, anticancer, antidiabetic, antihypertensive and antimicrobial properties. Extracts from various plants in the form of volatile oils have a beneficial efct on consumer health. their antioxidant and antimicrobial activities were demonstrated. (2) Methods: In the present study, the main purpose was to obtain a fermented dairy product with a high nutritional value; therefore, kefir, enriched with three types of volatile oils, namely, volatile mint oil, volatile fennel oil and volatile lavender oil, was made. The kefir samples obtained were sensory and texturally analyzed. The beneficial effect on health must also be studied in terms of the acceptability of these products by consumers from a sensory point of view. A non-numerical method based on several multi-personal approval criteria was used to interpret the results obtained in the sensory analysis. In the textural analysis, the consistency, cohesiveness and firmness of the kefir samples were analyzed. (3) Results: The samples enriched with volatile oils obtained superior results compared to the control sample in both conducted examinations. Kefir samples with volatile oils retained their sensory and textural characteristics for a longer time during storage. (4) Conclusions: The volatile oils added to kefir positively influenced the sensory and textural characteristics of the finished product.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Driss Ousaaid ◽  
Hassan Laaroussi ◽  
Meryem Bakour ◽  
Hayat Ennaji ◽  
Badiaa Lyoussi ◽  
...  

This study was designed to assess the antimicrobial potencies of apple vinegar against pathogenic microbes. The acidity and total phenolic content were carried out by titration with NaOH 0.1 N and the Folin–Ciocalteu method, respectively, while the spread plate method, agar well diffusion, and MIC assays were used to determine the antimicrobial activities of different vinegar samples. Acidity and phenolic content were dependent on the variety, where the highest values were observed in S2 with 4.02 ± 0.04% and 1.98 ± 0.05 mg GAE/mL for acidity and total phenolic content, respectively. The spread plate method revealed that samples S1 and S2 obtained from the Red delicious variety and Golden delicious variety, respectively, inhibit the growth of all tested strains, while S3 obtained from different varieties and S4 obtained from the Gala royal variety inhibit only two microbes (Escherichia coli and Vibrio cholerae). Sample S1 presented moderate antimicrobial effect against all examined strains with a diameter of inhibition ranging from 11 ± 0.7 to 19 ± 0.5 mm and with MIC values ranging between 1/2 and 1/100. The findings of the current study confirm the usefulness of apple vinegar as a natural sanitizer that inhibits the growth of pathogenic microbes.


Author(s):  
Jayanta Sarma ◽  
Gurvinder Singh ◽  
Mukta Gupta ◽  
Reena Gupta ◽  
Bhupinder Kapoor

Objective: The synthesis of novel benzimidazole-hydrazone derivatives has been carried out based on the previous findings that both these pharmacophores possess potent antimicrobial activities. The antibacterial properties of synthesized derivatives were screened against both Gram-positive and Gram-negative bacteria.Methods: O-phenylenediamine on condensation with substituted aromatic acids in polyphosphoric acid gave benzimidazole nucleus which on reaction with ethyl chloroacetate and hydrazine hydrate in two different steps resulted in the formation of substituted acetohydrazides. The targeted compounds 6a-l were synthesized by reaction of substituted acetohydrazides with aromatic aldehydes and screened for their antibacterial potential by cup-plate method.Results: The synthesized benzimidazole-hydrazones exhibited moderate to strong antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The compounds 6a-6f were found to be most effective against S. aureus, E. coli, and P. aeruginosa. Among all the synthesized compounds, the zone of inhibition of 6f in highest concentration, i.e., 100 μg/ml were found to be >31 mm against all the stains of bacteria.Conclusion: The antibacterial results revealed that the synthetized derivatives have significant antimicrobial properties and further structure activity relationship studies may develop more potent and less toxic molecules.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
G Ambarasan Govindasamy ◽  
Rabiatul Basria S. M. N. Mydin ◽  
Srimala Sreekantan ◽  
Nor Hazliana Harun

AbstractCalotropis gigantea (C. gigantea) extract with an ecofriendly nanotechnology approach could provide promising antimicrobial activity against skin pathogens. This study investigates the antimicrobial capability of green synthesized binary ZnO–CuO nanocomposites from C. gigantea against non-MDR (Staphylococcus aureus and Escherichia coli) and MDR (Klebsiella pneumoniae, Pseudomonas aeruginosa and methicillin-resistant S. aureus) skin pathogens. Scanning electron microscopy and transmission electron microscopy revealed the size and shape of B3Z1C sample. Results of X-ray powder diffraction, energy-dispersive spectroscopy, FTIR and UV–Vis spectroscopy analyses confirmed the presence of mixed nanoparticles (i.e., zinc oxide, copper oxide, carbon and calcium) and the stabilising phytochemical agents of plant (i.e., phenol and carbonyl). Antimicrobial results showed that carbon and calcium decorated binary ZnO–CuO nanocomposites with compositions of 75 wt% of ZnO and 25 wt% CuO (B3Z1C) was a strong bactericidal agent with the MBC/MIC ratio of ≤ 4 and ≤ 2 for non-MDR and MDR pathogens, respectively. A significant non-MDR zone of inhibitions were observed for BZC by Kirby–Bauer disc-diffusion test. Further time-kill observation revealed significant fourfold reduction in non-MDR pathogen viable count after 12 h study period. Further molecular studies are needed to explain the biocidal mechanism underlying B3Z1C potential.


2021 ◽  
Vol 32 (3) ◽  
pp. 119
Author(s):  
Abdullateef Abiodun Ajadi ◽  
Benjamin Emikpe ◽  
Ahmed Akeem

Some plants have been reported to be of medicinal values and reserve some antimicrobial properties. One of such plants is Mitracarpus scaber and its effect on bacterial growth is evaluated. The study aimed at evaluating the phytochemical analyses and antimicrobial potentials of Mitracarpus scaber against aquatic bacteria including Aeromonas, Bacillus, Vibrio and Staphylococcus Spp. Leaves of Mitracarpus scaber were collected, washed and air dried and phytochemical analysis and antimicrobial investigation of ethanolic and aqueous extracts of the leaves were carried out against a panel of bacteria isolated from diseased catfish from various farms. The phytoconstituents detected include saponins, tannins, flavonoids, tarpenoids, steroids, anthraquinones and alkaloids in both aqueous and ethanolic extracts. Both aqueous and ethanolic extracts of M. scaber showed varying degree of antibacterial activities but ethanolic extract showed a higher activity against the pathogens tested. The ethanolic extract had zones of inhibition similar to that of standard antibiotics (enrofloxacin) across all tested microbes.  The lowest minimum inhibitory concentration of ethanolic extract of M. scaber was against Bacillus sp with 10mg/ml while the highest was 85mg/ml against Staphylococcus species. The results of the assays showed promising evidences that M. scaber is a potential antibacterial agent against aquatic microbes.  However, further studies are recommended to fractionate its constituents and determine the in vitro and in vivo anti-microbial activities and the exact mechanism of action of the constituents.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2089
Author(s):  
Efrat Hochma ◽  
Ludmila Yarmolinsky ◽  
Boris Khalfin ◽  
Marina Nisnevitch ◽  
Shimon Ben-Shabat ◽  
...  

Current strategies of combating bacterial infections are limited and involve the use of antibiotics and preservatives. Each of these agents has generally inadequate efficacy and a number of serious adverse effects. Thus, there is an urgent need for new antimicrobial drugs and food preservatives with higher efficacy and lower toxicity. Edible plants have been used in medicine since ancient times and are well known for their successful antimicrobial activity. Often photosensitizers are present in many edible plants; they could be a promising source for a new generation of drugs and food preservatives. The use of photodynamic therapy allows enhancement of antimicrobial properties in plant photosensitizers. The purpose of this review is to present the verified data on the antimicrobial activities of photodynamic phytochemicals in edible species of the world’s flora, including the various mechanisms of their actions.


2021 ◽  
Vol 1044 ◽  
pp. 171-177
Author(s):  
Myrna Nurlatifah Zakaria ◽  
Ida Rodiyah Siti Halimah ◽  
Atia Nurul Sidiqa ◽  
Ira Artilia ◽  
Arief Cahyanto

Recurrent endodontic infections of treated teeth are mainly linked to microbial persistency in the root canal system. Enterococcus faecalis is a bacterium that is often identified in these recurrent infections. Calcium hydroxide (Ca(OH)2) is a widely used root canal medicament and is now being developed to be produced from natural materials. Ca(OH)2, which is synthesized from natural limestone from Palimanan, Indonesia, has a structure similar to Ca(OH)2, which is often used as a root canal medicament. The purpose of this study was to determine the antimicrobial property of Ca(OH)2 paste synthesized from natural limestone compared to conventional Ca(OH)2 paste. This study is an in vitro experimental study consists of 3 groups (n=24, namely, conventional Ca(OH)2 paste, limestone synthesized Ca(OH)2 paste, and saline as the negative control, for 2 intervals of time and evaluated by Total Plate Counting (TPC) method. Samples were mandibular first premolar root canal prepared by root canal preparation and contaminated with E. faecalis (ATCC 29212). The infected root canals of each group were treated by the medicaments, and samples from the root canals were taken on day 7 (n=4) and 14 (n=4). Results showed that both Ca(OH)2 groups had antimicrobial activities against E. faecalis. The limestone Ca(OH)2 paste group had the least amount of bacterial colonies on the 7th day compared to other groups. In contrast, on the 14th day, the conventional Ca(OH)2 paste had the least bacterial colonies. It can be concluded that the Ca(OH)2 paste synthesized from natural limestone has an antimicrobial effect on E. faecalis, the antimicrobial effect was higher on the 7th day but decreases on the 14th day, whereas the conventional Ca(OH)2 had a higher antimicrobial effect on day 14 compared to day 7. Further studies are expected to improve the long-term antimicrobial effectiveness and sustainability of the natural limestone synthesized Ca(OH)2 paste.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1503
Author(s):  
Jakkrawut Maitip ◽  
Wannapha Mookhploy ◽  
Supharerk Khorndork ◽  
Panuwan Chantawannakul

Bee venom (BV), or apitoxin, is a complex substance produced by a gland in the abdominal cavity of bees. The main component of BV is melittin, which is a largely studied substance due to its biological properties. To date, the most well-known bee venom and melittin are derived from domesticated honey bees, while venom and melittin derived from wild honey bees have been under-investigated. Hence, this study primarily reports the antimicrobial activities of bee venom and synthetic melittin derived from four different honey bee species (Apis mellifera, A. cerana, A. dorsata, and A. florea) in Thailand. All the bee venom extracts and melittins showed more robust antibacterial activities against Gram-positive (Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, S. aureus MRSA, and S. epidermidis) than Gram-negative bacteria (Escherichia coli, Klebsiella pneuminiae, and Salmonella typhimurium) or a fungus (Candida albicans), while the synthetic melittins also have antimicrobial activity at higher concentrations than the bee venom extract. Furthermore, the A. cerana venom extract showed the highest activity against the tested bacteria, followed by A. mellifera, A. florea, and A. dorsata. Therefore, A. cerana venom may be further developed for use in medical applications as a potential alternative agent against Gram-positive bacteria and antibiotic-resistant bacteria.


Author(s):  
Abdullah Alamami ◽  
Fatma Elshibani ◽  
Salmin Alshalmani ◽  
Mohamed Ali Sharkasi ◽  
Naema Elremali ◽  
...  

Aims: This research is focused on the in vitro evaluation of Cistus salviifolius L. antimicrobial properties and the determination of the contents of phenols and flavonoids. Study Design: This research is analytical study aimed to illustrate the antimicrobial properties and to analyze the methanolic extract contents of aerial parts of Cistus salviifolius L. by high-performance liquid chromatography techniques. Duration: The study was performed within six months in the Faculty of Pharmacy, Benghazy University. Methodology: Antimicrobial properties was tested against twelve organisms using Kirby-Bauer disk diffusion sensitivity test and the determination of the contents of phenols and flavonoids was evaluated by running high-performance liquid chromatography techniques. Results: The findings indicated that catechin is the most abundant flavonoid in C. salviifolius, while gallic acid was the major phenol in the methanolic extract of the plant. The results also revealed that the methanol extracts had a significant antimicrobial potential particularly against Bacillus subtilis and Escherichia coli with MIC (0.98 and 0.49) µg/ml respectively, furthermore the extract was effective against Aspergillus fumigatus with MIC 0.98 µg/ml.       Conclusion: C. salviifolius was highly rich with flavonoids and phenols and has a significant antimicrobial effect.


Sign in / Sign up

Export Citation Format

Share Document