scholarly journals Public Health Risk Assessment of the Door Handles of the Community Pharmacies in Qassim Region, Saudi Arabia

2020 ◽  
Vol 14 (4) ◽  
pp. 2649-2654
Author(s):  
Raya Alothaim ◽  
Ahmad Almatroudi ◽  
Monir Uddin Ahmed ◽  
Masood Alam Khan ◽  
Rejo Jacob Joseph ◽  
...  

Door handles are being reported to harbor a diverse group of microorganisms, mainly bacteria. Presence of pathogenic and antibiotic-resistant bacteria in the door handles carry risk to the health of the public. For this reason, a study was carried in the Qassim region of Saudi Arabia by isolating bacteria from the pharmacy door handles from four different areas. Total 100 samples were collected by wiping the door handles with a sterile cotton swab soaked in sterile water. Microorganisms were isolated using Blood agar and MacConkey agar and identified following standard microbiological procedure. Siemens MicroScan Walkaway system was used for determination of antibiotic susceptibility pattern. In total, 301 bacteria from 13 bacterial species were isolated and identified. The predominant bacterial species include Staphylococcus spp. 56.48% followed by Bacillus spp. 12.29% and Micrococcus spp. 10.30%. Gram-negative bacteria like Shigella sonnei and Salmonella paratyphiA were also isolated. Being the most predominant species, Antibiotic resistance pattern of 39 Staphylococcus spp. were determined. 38.46% of the Staphylococcus spp. were found to be resistant to Cefoxitin, and 30.76% were beta-lactamase producing. The results also indicated that about one -third of Staphylococcus spp. were methicillin resistant. The door handles of pharmacies in the Qassim region carry risk to the health of the public. Proper hygienic measures are recommended for the public health safety until doors are made automatic and touch-free.

2016 ◽  
Vol 30 (1-2) ◽  
pp. 1-5 ◽  
Author(s):  
Ali Azam Talukder ◽  
Hasna Hena Rahman ◽  
SM Jamil Mahmud ◽  
Fahmida Alam ◽  
Shuvra Kanti Dey

Prevalence of subclinical mastitis along with the etiological agents and their antimicrobial susceptibility were studied around the city of Dhaka, the capital of Bangladesh. Milk samples from 30 apparently healthy buffaloes were subjected to microbiological examinations while subclinical mastitis was diagnosed based on California Mastitis Test (CTM). Seventy percent of the buffaloes examined were positive for subclinical mastitis. A total of 42 isolates of 5 different species were identified. Among them, Staphylococcus spp. was the most frequently identified bacterial species accounting for 50% of all the isolates, followed by E.coli (28.57%), Enterobacter (14.29%), Bacillus spp. (4.76%) and Proteus spp. (2.38%). Highest resistance was found against amoxicillin (21.43%) where chloramphenicol and ciprofloxac in proved to be a more successful antimicrobial agent, resistance against which wasonly 4.76%. Results from the present study suggest that contagious mastitis controlpractice along with good personal hygiene practice is required for mastitis control in the area.Bangladesh J Microbiol, Volume 30, Number 1-2,June-Dec 2013, pp 1-5


Author(s):  
Mohamed H. El-Sayed

Antimicrobial resistance is a subject of great concern in the public health. The prevalence of antimicrobial resistance among food pathogens has increased during recent decades. Studying the incidence and antibiotic resistance pattern of bacterial species isolated from fish and vended street fruits.   Eleven fish swabs and thirteen sliced fruit samples were collected and prepared for isolation of bacterial species through inoculation onto selective and non-selective nutrient media. The grown colonies were purified through subculturing on nutrient agar plates then identified by morphological and biochemical methods. The obtained pure cultures were then kept on nutrient agar slants. Testing antibiotic resistance of the isolated bacterial strains was studied by Kirby-Bauer disk diffusion method on Mueller Hinton agar using ten antibiotics belonging to different classes. The resultant inhibition zone was interpreted according to Clinical Laboratory Standard Institute. Twenty-eight bacterial cultures were isolated from the collected food samples. The conventional identification using morphological and biochemical methods of these cultures revealed presence of three Gram positive species; Staphylococcus aureus, Streptococcus sp. and Bacillus subtilis in addition to four Gram negative; Escherichia coli, Brucella sp., Enterococcus faecalis and Proteus mirabilis. The incidence of the obtained bacterial species was arranged as 29.16% for both S. aureus and E. faecalis followed by Brucella sp. 16.66%; B. subtilis & E. coli 12.5% then Streptococcus sp. and P. mirabilis with an incidence of 8.33% each. Testing antibiotic resistance pattern of seven bacterial species against ten antibiotics showed that, among three Gram positive bacterial species, only one (33.33%) strain S. aureus exhibited resistance to six antibiotics; amoxicillin, erythromycin, ciprofloxacin, ceftriaxone, fluconazole and dicloxacillin. Among four Gram negative bacterial strains only one (25.0%) strain Enterococcus faecalis exhibited resistance to eight antibiotics; amoxicillin, streptomycin, chloramphenicol, cotrimoxazole, ciprofloxacin, ofloxacin, sparfloxacin and cloxacillin. Occurrence of multi-drug resistant bacteria in fish and vended street fruits poses not only risk of disease to the foods but public health hazard to food handlers and consumers in general. Also the result of this study recommended augmentin and cephazolin as good choice antibiotics for treatment of infection in the study area. 


2019 ◽  
Vol 63 (8) ◽  
Author(s):  
Monika Dolejska ◽  
Ivan Literak

ABSTRACT Wild animals foraging in the human-influenced environment are colonized by bacteria with clinically important antibiotic resistance. The occurrence of such bacteria in wildlife is influenced by various biological, ecological, and geographical factors which have not yet been fully understood. More research focusing on the human-animal-environmental interface and using novel approaches is required to understand the role of wild animals in the transmission of antibiotic resistance and to assess potential risks for the public health.


2008 ◽  
Vol 71 (7) ◽  
pp. 1486-1490 ◽  
Author(s):  
JOSEPH C. BROWN ◽  
XIUPING JIANG

The objective of this study was to determine the prevalence of antibiotic-resistant bacteria in various herbal products. Twenty-nine herbal supplements (18 traditional and 11 organic products) were purchased from stores and analyzed microbiologically. Total bacterial counts were determined by pour plate and surface spreading on tryptic soy agar (TSA). Antibiotic-resistant bacteria were enumerated on TSA supplemented with ceftriaxone (64 μg/ml) or tetracycline (16 μg/ml). Total bacterial counts ranged from <5 to 2.9 × 105 CFU/g. Ceftriaxone- and tetracycline-resistant bacteria were detected in ground garlic samples at 1.1 × 102 CFU/g and 3.0 × 102 CFU/g, respectively. Traditional and organic onion powder samples contained tetracycline-resistant bacteria at 17 and 28 CFU/g and ceftriaxone-resistant bacteria at 35 and 2.0 × 103 CFU/g, respectively. Other products such as ginger, rosemary, mustard, and goldenseal contained low levels of resistant bacteria. Fifty-two isolates were further evaluated against nine antibiotics, and the prevalence of antibiotic resistance was in the following order: ampicillin, nalidixic acid, trimethoprim, ceftriaxone, and streptomycin. Resistant bacteria were identified as Bacillus spp., Erwinia spp., and Ewingella americana. Staphylococcus spp., Enterobacter cloacae, and Stenotrophomonas maltophilia also were isolated. The presence of antibiotic-resistant bacteria and pathogens in these herbal products suggests that production and use of these products may need further evaluation.


2011 ◽  
Vol 19 (03) ◽  
pp. 505-520
Author(s):  
HAI-FENG HUO ◽  
JUN LI ◽  
YU-NING LI

Infection caused by antibiotic-resistant pathogens is one of global public health problems. Many factors contribute to the emergence and spread of these pathogens. A model which describes the transmission dynamics of susceptible and resistant bacteria in a pregnant woman and the fetus is presented. Detailed qualitative analysis about positivity, boundedness, global stability and uniform persistence of the model is carried out. Numerical simulation and sensitivity analysis show that antibiotic input has potential impact for neonatal drug resistance. Our results show that the resistant bacteria in baby mainly come from antibiotics which are wrongly-used during gestational period, or foods containing antibiotic residues.


2020 ◽  
Vol 10 (1) ◽  
pp. 1-4
Author(s):  
Omor Ahmed Chowdhury ◽  
Md Raihan Ahmed ◽  
Md Raihan Dipu ◽  
Md Aftab Uddin

The use of earphones has increased in recent times throughout the world especially among the different level of students such as school, college or university who have a higher tendency of sharing these among them. Unlike airline headsets, headphones and stethoscope ear-pieces, ear phones are often shared by multiple users and can be a potential medium for transmission of pathogens, which can give rise to various ear related infections. The objective of this study was to detect the pathogenic bacteria from the ear-phones used by the students of Stamford University Bangladesh. A total of 16 ear-phone swabs were collected by sterile cotton swabs. The swabs were inoculated onto blood agar and incubated aerobically overnight at 37oC. Microscopic observation and standard biochemical tests were performed to confirm the identification of all the bacterial isolates. Six presumptively identified Staphylococcus spp. (38%) were tested against six different types of antibiotics following Kirby-Bauer disk diffusion method. Isolates were found to be 84% resistant against Cotrimoxazole and demonstrated 100% sensitivity to Vancomycin and Ciprorofloxacin. The findings of this study suggest the users to disinfect their respective ear phones and not to exchange them as they may act as a potential source to transfer pathogenic and antibiotic resistant bacteria among the ear phone users. Stamford Journal of Microbiology, Vol.10 (1) 2020: 1-4


2020 ◽  
Author(s):  
Sudipti Arora ◽  
Sakshi Saraswat ◽  
Ankur Rajpal ◽  
Harshita Shringi ◽  
Rinki Mishra ◽  
...  

AbstractThe wastewater treatment plants effluent has been implicated in the spread of antibiotic resistant bacteria (ARB) as these environment contains multiple selective pressures that may increase mutation rates, pathogen survivability, and induce gene transfer between bacteria. In lieu of this, the present study explored the dynamics of earthworm-microorganisms interactions on the treatment efficacy of clinical laboratory wastewater treatment by vermifiltration and the effect of earthworms in the fate of removal of pathogens and ARB. The results of the study showed that earthworms and VF associated microbial community had a significant effect on BOD and COD reduction (78-85%), pathogen removal (>99.9 %) and caused a significant shift in the prevalence pattern of ARB. Additionally, molecular profiling of ESBL (blaSHV, blaTEM and blaCTX-M), MRSA (mec-A) and Colistin (mcr-1) gene confirmed the probable mechanisms behind the resistance pattern. The microbial community diversity assists in the formation of biofilm, which helps in the removal of pathogens and results in a paradigm shift in the resistance profile of ARB and ARG, specifically most effective against drugs, targeting cell wall and protein synthesis inhibition like Ampicillin, Ticarcillin, Gentamicin and Chloramphenicol. These findings prove vermifiltration technology as a sustainable and natural treatment technology for clinical laboratory wastewater.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 688
Author(s):  
Shashi B. Kumar ◽  
Shanvanth R. Arnipalli ◽  
Ouliana Ziouzenkova

Antibiotics have been used as essential therapeutics for nearly 100 years and, increasingly, as a preventive agent in the agricultural and animal industry. Continuous use and misuse of antibiotics have provoked the development of antibiotic resistant bacteria that progressively increased mortality from multidrug-resistant bacterial infections, thereby posing a tremendous threat to public health. The goal of our review is to advance the understanding of mechanisms of dissemination and the development of antibiotic resistance genes in the context of nutrition and related clinical, agricultural, veterinary, and environmental settings. We conclude with an overview of alternative strategies, including probiotics, essential oils, vaccines, and antibodies, as primary or adjunct preventive antimicrobial measures or therapies against multidrug-resistant bacterial infections. The solution for antibiotic resistance will require comprehensive and incessant efforts of policymakers in agriculture along with the development of alternative therapeutics by experts in diverse fields of microbiology, biochemistry, clinical research, genetic, and computational engineering.


Author(s):  
Ylaine Gerardin ◽  
Sonia Timberlake ◽  
Jessica R Allegretti ◽  
Mark B Smith ◽  
Zain Kassam

Abstract The transfer of live gut microbes may transform patient care across a range of autoimmune, metabolic, hepatic and infectious diseases. One early approach, fecal microbiota transplantation, has shown promise in Clostridiodes difficile infection and the potential for improving clinical and public health outcomes for other antibiotic-resistant bacteria. These clinical successes have motivated the development of microbiome drugs, which will need to address challenges in safety, uniformity, and delivery while seeking to preserve the benefits of using whole microbiome communities as novel therapeutics and an innovative platform for drug discovery.


2019 ◽  
Vol 63 (12) ◽  
Author(s):  
Feiruz Alamiri ◽  
Kristian Riesbeck ◽  
Anders P. Hakansson

ABSTRACT HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a protein-lipid complex derived from human milk that was first described for its tumoricidal activity. Later studies showed that HAMLET also has direct bactericidal activity against select species of bacteria, with highest activity against Streptococcus pneumoniae. Additionally, HAMLET in combination with various antimicrobial agents can make a broad range of antibiotic-resistant bacterial species sensitive to antibiotics. Here, we show that HAMLET has direct antibacterial activity not only against pneumococci but also against Streptococcus pyogenes (group A streptococci [GAS]) and Streptococcus agalactiae (group B streptococci [GBS]). As with pneumococci, HAMLET treatment of GAS and GBS resulted in depolarization of the bacterial membrane, followed by membrane permeabilization and death, which was able to be inhibited by calcium and sodium transport inhibitors. Treatment of clinical antibiotic-resistant isolates of S. pneumoniae, GAS, and GBS with sublethal concentrations of HAMLET in combination with antibiotics decreased the MICs of the antibiotics into the sensitive range. This effect could also be blocked by ion transport inhibitors, suggesting that HAMLET’s bactericidal and combination treatment effects used similar mechanisms. Finally, we show that HAMLET potentiated the effects of erythromycin against erythromycin-resistant bacteria more effectively than penicillin G potentiated killing bacteria resistant to erythromycin. These results show that HAMLET effectively (i) kills three different species of pathogenic streptococci by similar mechanisms and also (ii) potentiates the activities of macrolides and lincosamides more effectively than combination treatment with beta-lactams. These findings suggest a potential therapeutic role for HAMLET in repurposing antibiotics currently causing treatment failures in patients.


Sign in / Sign up

Export Citation Format

Share Document