scholarly journals Neuropathy - Exponent of Accelerated Involution in Uremia: The Role of Carbamylation

Author(s):  
Tatjana Lazarevic ◽  
Zoran Kovacevic

Abstract Premature loss of functional integrity of the nervous system in chronic renal failure (CRF) as a consequence of persistent biological activities of the general uremic milieu is almost identical to its structural and functional involution during the process of physiological ageing, but disproportionate and independent of chronological age. In the hyperuremic status of CRF (urea - carbamide), forced carbamylation, as a non-enzymatic post-translational modification (NEPTM) of proteins and amino acids, by changing their biological properties and decreasing proteolysis capacity, represents pathogenetic potential of intensified molecular ageing and accelerated, pathological involution. Physiological predisposition and the exposure of neuropathy before complications of other organs and organ systems in CRF, due to the simultaneous and mutually pathogenetically related uremic lesion and the tissue and vascular segment of the nervous system, direct interest towards proteomic analytical techniques of quantification of carbamylated products as biomarkers of uremic neurotoxicity. Hypothetically, identical to the already established applications of other NEPTM products in practice, they have the potential of clinical methodology in the evaluation of uremic neuropathy and its contribution to the general prediction, but also to the change of the conventional CRF classification. In addition, the identification and therapeutic control of the substrate of accelerated involution, responsible for the amplification of not only neurological but also general degenerative processes in CRF, is attractive in the context of the well-known attitude towards aging.

2018 ◽  
Vol 47 (1) ◽  
pp. 89-100 ◽  
Author(s):  
Sameera Iqbal ◽  
Mina Ghanimi Fard ◽  
Arun Everest-Dass ◽  
Nicolle H. Packer ◽  
Lindsay M. Parker

Abstract Glycosylation, the enzymatic process by which glycans are attached to proteins and lipids, is the most abundant and functionally important type of post-translational modification associated with brain development, neurodegenerative disorders, psychopathologies and brain cancers. Glycan structures are diverse and complex; however, they have been detected and targeted in the central nervous system (CNS) by various immunohistochemical detection methods using glycan-binding proteins such as anti-glycan antibodies or lectins and/or characterized with analytical techniques such as chromatography and mass spectrometry. The glycan structures on glycoproteins and glycolipids expressed in neural stem cells play key roles in neural development, biological processes and CNS maintenance, such as cell adhesion, signal transduction, molecular trafficking and differentiation. This brief review will highlight some of the important findings on differential glycan expression across stages of CNS cell differentiation and in pathological disorders and diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, schizophrenia and brain cancer.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Tianshui Sun ◽  
Zhuonan Liu ◽  
Qing Yang

Abstract Metabolic reprogramming, including enhanced biosynthesis of macromolecules, altered energy metabolism, and maintenance of redox homeostasis, is considered a hallmark of cancer, sustaining cancer cell growth. Multiple signaling pathways, transcription factors and metabolic enzymes participate in the modulation of cancer metabolism and thus, metabolic reprogramming is a highly complex process. Recent studies have observed that ubiquitination and deubiquitination are involved in the regulation of metabolic reprogramming in cancer cells. As one of the most important type of post-translational modifications, ubiquitination is a multistep enzymatic process, involved in diverse cellular biological activities. Dysregulation of ubiquitination and deubiquitination contributes to various disease, including cancer. Here, we discuss the role of ubiquitination and deubiquitination in the regulation of cancer metabolism, which is aimed at highlighting the importance of this post-translational modification in metabolic reprogramming and supporting the development of new therapeutic approaches for cancer treatment.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Sabrina Bimonte ◽  
Antonio Barbieri ◽  
Maddalena Leongito ◽  
Giuseppe Palma ◽  
Vitale del Vecchio ◽  
...  

Pancreatic ductal adenocarcinoma is currently one of the deadliest cancers with low overall survival rate. This disease leads to an aggressive local invasion and early metastases and is poorly responsive to treatment with chemotherapy or chemoradiotherapy. Several studies have shown that pancreatic cancer stem cells (PCSCs) play different roles in the regulation of drug resistance and recurrence in pancreatic cancer. MicroRNA (miRNA), a class of newly emerging small noncoding RNAs, is involved in the modulation of several biological activities ranging from invasion to metastases development, as well as drug resistance of pancreatic cancer. In this review, we synthesize the latest findings on the role of miRNAs in regulating different biological properties of pancreatic cancer stem cells.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ye Wang ◽  
Hongping Hou ◽  
Qiang Ren ◽  
Haoyu Hu ◽  
Tiechui Yang ◽  
...  

AbstractFritillaria naturally grows in the temperate region of Northern Hemisphere and mainly distributes in Central Asia, Mediterranean region, and North America. The dried bulbs from a dozen species of this genus have been usually used as herbal medicine, named Beimu in China. Beimu had rich sources of phytochemicals and have extensively applied to respiratory diseases including coronavirus disease (COVID-19). Fritillaria species have alkaloids that act as the main active components that contribute multiple biological activities, including anti-tussive, expectorant, and anti-asthmatic effects, especially against certain respiratory diseases. Other compounds (terpenoids, steroidal saponins, and phenylpropanoids) have also been identified in species of Fritillaria. In this review, readers will discover a brief summary of traditional uses and a comprehensive description of the chemical profiles, biological properties, and analytical techniques used for quality control. In general, the detailed summary reveals 293 specialized metabolites that have been isolated and analyzed in Fritillaria species. This review may provide a scientific basis for the chemical ecology and metabolomics in which compound identification of certain species remains a limiting step.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Feng Bo ◽  
Li Shengdong ◽  
Wang Zongshuai ◽  
Cao Fang ◽  
Wang Zheng ◽  
...  

AbstractLysine 2-hydroxyisobutyrylation (Khib) is a novel naturally occurring post-translational modification. The system Khib identification at proteomics level has been performed in various species and tissues to characterize the role of Khib in biological activities. However, the study of Khib in plant species is relatively less. In the present study, the first plant root tissues lysine 2-hydroxyisobutyrylome analysis was performed in wheat with antibody immunoprecipitation affinity, high resolution mass spectrometry-based proteomics and bioinformatics analysis. In total, 6328 Khib sites in 2186 proteins were repeatedly identified in three replicates. These Khib proteins showed a wide subcellular location distribution. Function and pathways characterization of these Khib proteins indicated that many cellular functions and metabolism pathways were potentially affected by this modification. Protein and amino acid metabolism related process may be regulated by Khib, especially ribosome activities and proteins biosynthesis process. Carbohydrate metabolism and energy production related processes including glycolysis/gluconeogenesis, TCA cycle and oxidative phosphorylation pathways were also affected by Khib modification. Besides, root sulfur assimilation and transformation related enzymes exhibited Khib modification. Our work illustrated the potential regulation role of Khib in wheat root physiology and biology, which could be used as a useful reference for Khib study in plant root.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 308
Author(s):  
Chatragadda Ramesh ◽  
Bhushan Rao Tulasi ◽  
Mohanraju Raju ◽  
Narsinh Thakur ◽  
Laurent Dufossé

Marine tunicates are identified as a potential source of marine natural products (MNPs), demonstrating a wide range of biological properties, like antimicrobial and anticancer activities. The symbiotic relationship between tunicates and specific microbial groups has revealed the acquisition of microbial compounds by tunicates for defensive purpose. For instance, yellow pigmented compounds, “tambjamines”, produced by the tunicate, Sigillina signifera (Sluiter, 1909), primarily originated from their bacterial symbionts, which are involved in their chemical defense function, indicating the ecological role of symbiotic microbial association with tunicates. This review has garnered comprehensive literature on MNPs produced by tunicates and their symbiotic microbionts. Various sections covered in this review include tunicates’ ecological functions, biological activities, such as antimicrobial, antitumor, and anticancer activities, metabolic origins, utilization of invasive tunicates, and research gaps. Apart from the literature content, 20 different chemical databases were explored to identify tunicates-derived MNPs. In addition, the management and exploitation of tunicate resources in the global oceans are detailed for their ecological and biotechnological implications.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1784
Author(s):  
Azher Arafah ◽  
Muneeb U. Rehman ◽  
Tahir Maqbool Mir ◽  
Adil Farooq Wali ◽  
Rayeesa Ali ◽  
...  

Extensive research has been carried out during the last few decades, providing a detailed account of thousands of discovered phytochemicals and their biological activities that have the potential to be exploited for a wide variety of medicinal purposes. These phytochemicals, which are pharmacologically important for clinical use, primarily consist of polyphenols, followed by terpenoids and alkaloids. There are numerous published reports indicating the primary role of phytochemicals proven to possess therapeutic potential against several diseases. However, not all phytochemicals possess significant medicinal properties, and only some of them exhibit viable biological effects. Naringenin, a flavanone found in citrus fruits, is known to improve immunity, repair DNA damage, and scavenge free radicals. Despite the very low bioavailability of naringenin, it is known to exhibit various promising biological properties of medicinal importance, including anti-inflammatory and antioxidant activities. This review focuses on the various aspects related to naringenin, particularly its physicochemical, pharmacokinetic, and pharmacodynamic properties. Furthermore, various pharmacological activities of naringenin, such as anticancer, antidiabetic, hepatoprotective, neuroprotective, cardioprotective, nephroprotective, and gastroprotective effects, have been discussed along with their mechanisms of action.


2018 ◽  
Vol 7 (2) ◽  
pp. 152-161
Author(s):  
Nilay D Solanki ◽  
◽  
Shailesh K Bhavsar ◽  
Dharmang T Pandya ◽  
◽  
...  

Diabetes mellitus is a metabolic disorder associated with structural and functional alterations of various organ systems. The tissue injury is attributed primarily to chronic hyperglycemia. Diabetic complications are associated with microvascular and macrovascular damage to the major organs of the body, here in this topic role of herbals for complications of Nervous system in diabetes is discussed as a new therapeutic horizon. Peripheral neuropathy along with the small and large blood vessel disease can explain most of the diabetesrelated organ failure, over the last two decades that the deleterious effects of chronic hyperglycemia extend beyond neuropathy and angiopathy. Examples of such diabetic complications include opacification of the lens and central nervous system [CNS] dysfunction. In contrast to the high prevalence rate of renal failure in diabetic patients, except for retinal disease, the chronic diabetic complications of the CNS are subtle and often unrecognized. Whereas the CNS effects of acute alterations in blood glucose level are well known, the effect of chronic hyperglycemia on brain metabolism and cognitive function is not widely appreciated. All the conventional therapies for the diabetic neuropathy with neurodegeneration do have disadvantage from the point of view of efficacy and side effects. Since last few decades Herbals getting more attraction towards neuroprotection in CNS complications of diabetes, further more studies are going on herbals for neuroprotection in diabetes. In the treatment of diabetic neuropathy [DN] herbals and phytoconstituents were proved better option, because excellent efficacy and cost effectiveness compared to conventional treatment


Author(s):  
Benjamin F. Trump ◽  
Irene K. Berezesky ◽  
Raymond T. Jones

The role of electron microscopy and associated techniques is assured in diagnostic pathology. At the present time, most of the progress has been made on tissues examined by transmission electron microscopy (TEM) and correlated with light microscopy (LM) and by cytochemistry using both plastic and paraffin-embedded materials. As mentioned elsewhere in this symposium, this has revolutionized many fields of pathology including diagnostic, anatomic and clinical pathology. It began with the kidney; however, it has now been extended to most other organ systems and to tumor diagnosis in general. The results of the past few years tend to indicate the future directions and needs of this expanding field. Now, in addition to routine EM, pathologists have access to the many newly developed methods and instruments mentioned below which should aid considerably not only in diagnostic pathology but in investigative pathology as well.


Sign in / Sign up

Export Citation Format

Share Document