scholarly journals Inflammation in Cancer Development

2022 ◽  
Vol 10 (19) ◽  
pp. 48-51
Author(s):  
Víctor M. Muñoz-Pérez ◽  
Raquel Cariño-Cortés ◽  
Iris C. López-Santillán ◽  
Andrés Salas-Casas

Inflammation plays an important role to the development of cancer and promotes all stages of tumorigenesis. Cancer cells, as well as inflammatory cells, carry out reciprocal interactions to form an inflammatory tumor microenvironment (TME). Cancer cells within the TME are highly able to change their phenotypic and functional characteristics. Here, we review the relationship between inflammation and infection in cancer origins, and the mechanisms whereby inflammation and infection drive tumor formation. We discuss how infection promotes tumorigenesis related to inflammatory processes typically found in autoimmune diseases, release of inflammatory mediators induced by tumors, inflammation induced by therapy in cancer, and stimuli for induction of inflammation during tumorigenesis, including spatiotemporal considerations. A better understanding of the fundamental rules of engagement that govern the molecular and cellular mechanisms of tumor-promoting inflammation will be essential for further development of cancer therapies.

2020 ◽  
Vol 15 (6) ◽  
pp. 482-491 ◽  
Author(s):  
Milena Kostadinova ◽  
Milena Mourdjeva

Mesenchymal stem/stromal cells (MSCs) are localized throughout the adult body as a small population in the stroma of the tissue concerned. In injury, tissue damage, or tumor formation, they are activated and leave their niche to migrate to the site of injury, where they release a plethora of growth factors, cytokines, and other bioactive molecules. With the accumulation of data about the interaction between MSCs and tumor cells, the dualistic role of MSCs remains unclear. However, a large number of studies have demonstrated the natural anti-tumor properties inherent in MSCs, so this is the basis for intensive research for new methods using MSCs as a tool to suppress cancer cell development. This review focuses specifically on advanced approaches in modifying MSCs to become a powerful, precision- targeted tool for killing cancer cells, but not normal healthy cells. Suppression of tumor growth by MSCs can be accomplished by inducing apoptosis or cell cycle arrest, suppressing tumor angiogenesis, or blocking mechanisms mediating metastasis. In addition, the chemosensitivity of cancer cells may be increased so that the dose of the chemotherapeutic agent used could be significantly reduced.


2020 ◽  
Vol 7 (12) ◽  
pp. 4158-4169
Author(s):  
Nhi Thao Huynh ◽  
Khuong Duy Pham ◽  
Nhat Chau Truong

Exosomes are subcellular entities which were first discovered in the 1980s. Over the past decade, scientists have discovered that they carry components of genetic information that allow for cell-cell communication and cell targeting. Exosomes secreted by cancer cells are termed cancer-derived exosomes (CDEs), and play an important role in tumor formation and progression. Specifically, CDEs mediate the communication between cancer cells, as well as between cancer cells and other cells in the tumor microenvironment, including cancer-associated fibroblasts, endothelial cells, mesenchymal stem cells, and effector immune cells. Additionally, through the vascular system and body fluids, CDEs can modulate response to drugs, increase angiogenesis, stimulate proliferation, promote invasion and metastasis, and facilitate escape from immune surveillance. This review will discuss the relationship between cancer cells and other cells (particularly immune cells), as mediated through CDEs, as well as the subsequent impact on tumorigenesis and immunomodulation. Understanding the role of CDEs in tumorigenesis and immune cell modulation will help advance their utilization in the diagnosis, prognosis, and treatment of cancer.


Author(s):  
Svetlana Sergeevna Kozunova ◽  
Alla Grigorievna Kravets

The article highlights the aspects of risk management in the information system. According to the analysis of the work of Russian and foreign scientists and world practices in the field of risk management, it is stated that there is a need to improve the effectiveness of risk management of information system and to develop a method for managing the risks of the information system. As a solution to the problem of effective risk management of the information system, there has been proposed a formalized procedure for managing the risks of the information system. The scientific novelty of this solution is the use of decision space and optimization space to reduce risks. This procedure allows to assess the damage, risk and effectiveness of risk management of the information system. The risks of the information system are determined and analyzed; a pyramidal risk diagram is developed. This diagram allows you to describe the relationship of risks with the components of the information system. The negative consequences to which these risks can lead are given. The analysis of methods and approaches to risk management has been carried out. Based on the results of the analysis, the methods GRAMM, CORAS, GOST R ISO / IEC scored to the maximum. The weak points of these methods and the difficulty of applying these methods in practice are described. The developed formalized risk management procedure to control the risks of information system can be used as management system’s element of the information security quality that complies with the recommendations of GOST R ISO / IEC 27003-2012. The prospect of further development of the research results is the development of management systems of risk of information system.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1627 ◽  
Author(s):  
Anita Thyagarajan ◽  
Mamdouh Salman A. Alshehri ◽  
Kelly L.R. Miller ◽  
Catherine M. Sherwin ◽  
Jeffrey B. Travers ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) remains a devastating human malignancy with poor prognosis and low survival rates. Several cellular mechanisms have been linked with pancreatic carcinogenesis and also implicated in inducing tumor resistance to known therapeutic regimens. Of various factors, immune evasion mechanisms play critical roles in tumor progression and impeding the efficacy of cancer therapies including PDAC. Among immunosuppressive cell types, myeloid-derived suppressor cells (MDSCs) have been extensively studied and demonstrated to not only support PDAC development but also hamper the anti-tumor immune responses elicited by therapeutic agents. Notably, recent efforts have been directed in devising novel approaches to target MDSCs to limit their effects. Multiple strategies including immune-based approaches have been explored either alone or in combination with therapeutic agents to target MDSCs in preclinical and clinical settings of PDAC. The current review highlights the roles and mechanisms of MDSCs as well as the implications of this immunomodulatory cell type as a potential target to improve the efficacy of therapeutic regimens for PDAC.


2020 ◽  
Vol 16 (4) ◽  
pp. 465-488
Author(s):  
Thomas M.J. Möllers

AbstractThe Europeanisation of domestic law calls for a classical methodology to ‘update’ the established traditions of the law. The relationship between European directives and national law is difficult, since directives do apply, but European legal texts need to be implemented into national law. Whilst directives are not binding on private individuals, there is no direct third-party effect, but only an ‘indirect effect’. This effect is influenced by the stipulations of the ECJ, but is ultimately determined in accordance with methodical principles of national law. The ECJ uses a broad term of interpretation of the law. In contrast, in German and Austrian legal methodology the wording of a provision defines the dividing line between interpretation and further development of the law. The article reveals how legal scholars and the case-law have gradually shown in recent decades a greater willingness to shift from a narrow, traditional boundary of permissible development of the law to a modern line of case-law regarding the boundary of directive-compliant, permissible development of the law.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dilara Uzuner ◽  
Yunus Akkoç ◽  
Nesibe Peker ◽  
Pınar Pir ◽  
Devrim Gözüaçık ◽  
...  

AbstractPrimary cancer cells exert unique capacity to disseminate and nestle in distant organs. Once seeded in secondary sites, cancer cells may enter a dormant state, becoming resistant to current treatment approaches, and they remain silent until they reactivate and cause overt metastases. To illuminate the complex mechanisms of cancer dormancy, 10 transcriptomic datasets from the literature enabling 21 dormancy–cancer comparisons were mapped on protein–protein interaction networks and gene-regulatory networks to extract subnetworks that are enriched in significantly deregulated genes. The genes appearing in the subnetworks and significantly upregulated in dormancy with respect to proliferative state were scored and filtered across all comparisons, leading to a dormancy–interaction network for the first time in the literature, which includes 139 genes and 1974 interactions. The dormancy interaction network will contribute to the elucidation of cellular mechanisms orchestrating cancer dormancy, paving the way for improvements in the diagnosis and treatment of metastatic cancer.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1143
Author(s):  
Haiyan Xu ◽  
Keizo Hiraishi ◽  
Lin-Hai Kurahara ◽  
Yuko Nakano-Narusawa ◽  
Xiaodong Li ◽  
...  

Chronic inflammation is a risk factor for colorectal cancer, and inflammatory cytokines secreted from inflammatory cells and active oxygen facilitate tumorigenesis. Intestinal bacteria are thought to regulate tumorigenesis. The longer the breastfeeding period, the lower is the risk of inflammatory bowel disease. Here, we investigated preventive effects of the probiotic Lactobacillus rhamnosus M9 (Probio-M9) on colitis-associated tumorigenesis. An inflammatory colorectal tumor model was established using a 6-week-old male C57BL/6NCrSlc mouse, which was intraperitoneally administered with azoxymethane (AOM: 12 mg/kg body weight). On weeks 2 and 4, 2% dextran sulfate sodium (DSS) was administered to mice for 7 days through drinking water. On weeks 8 and 10, Probio-M9 (2 × 109/day) was orally administered for 7 days. Animals were sacrificed at 20 weeks after AOM administration and immunohistochemical staining and Western blotting was performed. The α-diversity of microflora (Shannon index), principal coordinate analysis, and distribution of intestinal bacterium genera and metabolic pathways were compared. The AOM/DSS group showed weight loss, diarrhea, intestinal shortening, increased number of colon tumors, proliferating tumorigenesis, increased inflammation score, fibrosis, increased CD68+, or CD163+ macrophage cells in the subserosal layer of non-tumor areas. Inflammation and tumorigenesis ameliorated after Probio-M9 treatment. Fecal microbial functions were altered by AOM/DSS treatment. Probio-M9 significantly upregulated the fecal microbial diversity and reversed fecal microbial functions. Thus, Probio-M9 could suppress tumor formation in the large intestine by regulating the intestinal environment and ameliorating inflammation, suggesting its therapeutic potential for treatment of inflammation and colitis-associated tumorigenesis.


2008 ◽  
Vol 180 (4) ◽  
pp. 661-663 ◽  
Author(s):  
Karen W. Yuen ◽  
Arshad Desai

Aneuploidy and chromosome instability (CIN) are hallmarks of the majority of solid tumors, but the relationship between them is not well understood. In this issue, Thompson and Compton (Thompson, S.L., and D.A. Compton. 2008. Examining the link between chromosomal instability and aneuploidy in human cells. J. Cell. Biol. 180:665–672) investigate the mechanism of CIN in cancer cells and find that CIN arises primarily from defective kinetochore–spindle attachments that evade detection by the spindle checkpoint and persist into anaphase. They also explore the consequences of artificially elevating chromosome missegregation in otherwise karyotypically normal cells. Their finding that induced aneuploidy is rapidly selected against suggests that the persistence of aneuploid cells in tumors requires not only chromosome missegregation but also additional, as yet poorly defined events.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Lucien McBeth ◽  
Maria Grabnar ◽  
Steven Selman ◽  
Terry D. Hinds

Bladder cancer is encountered worldwide having been associated with a host of environmental and lifestyle risk factors. The disease has a male to female prevalence of 3 : 1. This disparity has raised the possibility of the androgen receptor (AR) pathway being involved in the genesis of the disease; indeed, research has shown that AR is involved in and is likely a driver of bladder cancer. Similarly, an inflammatory response has been implicated as a major player in bladder carcinogenesis. Consistent with this concept, recent work on anti-inflammatory glucocorticoid signaling points to a pathway that may impact bladder cancer. The glucocorticoid receptor- (GR-)αisoform has an important role in suppressing inflammatory processes, which may be attenuated by AR in the development of bladder cancer. In addition, a GR isoform that is inhibitory to GRα, GRβ, is proinflammatory and has been shown to induce cancer growth. In this paper, we review the evidence of inflammatory mediators and the relationship of AR and GR isoforms as they relate to the propensity for bladder cancer.


Author(s):  
Katalin Dózsa ◽  
Fruzsina Mezei ◽  
Tamás Tóth ◽  
Ábel Perjés ◽  
Péter Pollner

Abstract Background: Expectations towards general practitioners (GPs) are continuously increasing to provide a more systematic preventive- and definitive-based care, a wider range of multidisciplinary team-based services and to integrate state-of-the-art digital solutions into daily practice. Aided by development programmes, Hungarian primary care is facing the challenge to fulfil its role as the provider of comprehensive, high quality, patient-centred, preventive care, answering the challenges caused by non-communicable diseases (NCDs). Aim: The article aims to provide an insight into the utilization of simple, digital, medical devices. We show the relationship between the primary health care (PHC) practice models and the used types of devices. We point at further development directions of GP practices regarding the utilization of evidence-based medical technologies and how such devices support the screening and chronic care of patients with NCDs in everyday practice. Methods: Data were collected using an online self-assessment questionnaire from 1800 Hungarian GPs registered in Hungary. Descriptive statistics, Wilcoxon’s test and χ2 test were applied to analyze the ownership and utilization of 32 types of medical devices, characteristics of the GP practices and to highlight the differences between traditional and cluster-based operating model. Findings: Based on the responses from 27.7% of all Hungarian GPs, the medical device infrastructure was found to be limited especially in single GP-practices. Those involved in development projects of GP’s clusters in the last decade reported a wider range and significantly more intensive utilization of evidence-based technologies (average number of devices: 5.42 versus 7.56, P<.001), but even these GPs are not using some of their devices (e.g., various point of care testing devices) due to the lack of financing. In addition, GPs involved in GPs-cluster development model programmes showed significantly greater willingness for sharing relatively expensive, extra workforce-demanding technologies (χ2 = 24.5, P<.001).


Sign in / Sign up

Export Citation Format

Share Document