scholarly journals Analysis of technical development of small-sized loaders with on-board swing system

Author(s):  
Leonid Razarenov ◽  
Nikolay Rozenfel'd ◽  
Denis Voronovskyy

Due to the spread of small-sized loaders with on-board swing system (SLOS), it has become necessary to determine the level of their technical development. To understand the set task, a review of small-sized loaders, their classifications, performance parameters and implements was made. Modern SLOS manufacturers were analysed; their design features; main operating parameters: engine power, load capacity, speed and vehicle weight. An analysis of recent papers describing SLOS performance was conducted. It should be noted that most of them consider specific workflow processes, design features that do not reflect the full range of such machines. To solve this problem, a statistical analysis of theSLOS nomenclature data was performed depending on the classification features and performance indicators. This article presents the assessment of the impact of SLOS performance parameters and classification features on their level of technical development. Based on statistical data, the regression equations of the dependences were obtained: engine power on load capacity; loader weight on load capacity; dependences of performane parameters were plotted. General trends in the technical development of small-sized loaders were established. The vast majority of manufacturers focus on the production of medium-capacity loaders, as they are in the greatest demand. The analysis of the graphs suggests that in the future production of small-sized loaders with the load capacity of up to 1.5 tons, engine power of 60-70 kW and weight of up to 5 tons will increase. We can also predict growing production of compact SLOS with the load capacity of up to 0.5 tons, engine power of 20-30 kW and weighing up to 2 tons, which are widely used in urban landscaping. With the help of the present paper we can predict development trends, establish weaknesses of modern SLOSs and avoid competition when designing new loaders.

2018 ◽  
Vol 7 (4.3) ◽  
pp. 130 ◽  
Author(s):  
Hayder Abed Dhahad ◽  
Wissam Hameed Alawee ◽  
Andrii Marchenko ◽  
Dmytro Klets ◽  
Oleg Akimov

A method for estimating the power characteristics of the car engine in various driving regimes is proposed. It is determined that the volume of the free power (engine power reserve) allows the driver to implement the turning parameters and the time of its completion, which are set by the steering parameters, position and the speed of the steering wheels rotation. The engine power reserve is necessary to provide the required maneuverability indicators. The engine power during maneuvering is spent on overcoming the resistance to movement and on providing the impact controlled by the maneuver. The first component of the engine power can be called connected, and the second one can be called the free one or a controlled component. The received analytical expressions allow carrying out at the design stage a rational choice of capacity of the engine by the condition of maintenance of demanded properties of maneuverability. The developed method for constructing the refined acceleration characteristics of the engine makes it possible to determine the dynamic capabilities of the car, taking into account its design features and operating conditions. 


2020 ◽  
Vol 182 ◽  
pp. 02005
Author(s):  
Jiheng Jiang ◽  
Ying Qiao ◽  
Zongxiang Lu ◽  
Liang Ran ◽  
Ming Ma ◽  
...  

Forward electricity market has emerged as a pivotal section for the electricity transaction to keep stakeholders away from price risk and electricity shortage. But the forward contract of conventional unit partially limits the unit output before operation, leading to the curtailed generation share of renewable energy source (RES). Modeling and assessing this impact is of great significance for system planning and market supervision. The central thesis of this paper is to find out the impact of forward market on RES curtailment. A probabilistic evaluation model for RES accommodation is proposed, taking the curtailment rate as a main evaluation index. We mainly research financial contract and physical contract, modeling the impact of them on thermal unit minimum load capacity and power load in evaluation model. The simulation is conducted in a simplified system, which reveals the change of RES curtailment with renege penalty, contract price and execution generation curve.


1973 ◽  
Vol 12 (4) ◽  
pp. 438-439
Author(s):  
G. M. Radhul

The book under review deals with economic integration among deve¬loping countries from the point of view of planning. The author believes that it is useful to approach economic integration from a planning point of view and to develop planning models for it, because the theory of economic integration relevant for developing countries should be directed towards the impact of integration on future investments and future production. The type of models used in the book are the multisector linear programming models and the method of analysis is essentially a comparison of two situations; one with economic integration and the other without. For each prospective partici¬pant a medium term planning model is drawn up taking account of its economic situation in some base year. The results of these single country planning models are analysed and compared to those of a similar planning model for the integration area as a whole. The consequences of the integration policy are then evaluated.


2020 ◽  
Vol 2 (7) ◽  
pp. 91-99
Author(s):  
E. V. KOSTYRIN ◽  
◽  
M. S. SINODSKAYA ◽  

The article analyzes the impact of certain factors on the volume of investments in the environment. Regression equations describing the relationship between the volume of investment in the environment and each of the influencing factors are constructed, the coefficients of the Pearson pair correlation between the dependent variable and the influencing factors, as well as pairwise between the influencing factors, are calculated. The average approximation error for each regression equation is determined. A correlation matrix is constructed and a conclusion is made. The developed econometric model is implemented in the program of separate collection of municipal solid waste (MSW) in Moscow. The efficiency of the model of investment management in the environment is evaluated on the example of the growth of planned investments in the activities of companies specializing in the export and processing of solid waste.


2007 ◽  
Vol 21 (3) ◽  
pp. 245-263 ◽  
Author(s):  
Elizabeth K. Keating ◽  
Eric S. Berman

The Government Accounting Standards Board (GASB) recently released Statement No. 45, Accounting and Financial Reporting by Employers for Post-Employment Benefits Other Than Pensions and its companion Statement No. 43 for pooled stand-alone health care plans, which will profoundly affect American governmental finance. The goal of this article is to encourage governments to consider carefully a full range of options in funding and restructuring other post-employment benefits (OPEB). This article will review Statement No. 45's potential impact on governments and review existing disclosures in financial reports as well as bond offering statements. The article will discuss the statement's impact on budgets and governmental operations, including collective bargaining. Funding options under Statement No. 45 will be detailed, including the advantages and disadvantages of irrevocable trusts and OPEB bonds. The article will also discuss the impact of Medicare Part D subsidies received by governments, as well as the bond rating implications of policy decisions surrounding OPEB. As the largest government entities are just now implementing GASB Statement No. 45, estimates of the magnitude of unfunded OPEB liabilities are limited as are the strategies likely to be adopted to cover these obligations. This article offers a summary of the unfunded OPEB liabilities reported by states and major cities and suggests some measures for assessing the ability of these entities to address these costs.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1153
Author(s):  
Shih-Jung Wang ◽  
Cheng-Haw Lee ◽  
Chen-Feng Yeh ◽  
Yong Fern Choo ◽  
Hung-Wei Tseng

Climate change can directly or indirectly influence groundwater resources. The mechanisms of this influence are complex and not easily quantified. Understanding the effect of climate change on groundwater systems can help governments adopt suitable strategies for water resources. The baseflow concept can be used to relate climate conditions to groundwater systems for assessing the climate change impact on groundwater resources. This study applies the stable baseflow concept to the estimation of the groundwater recharge in ten groundwater regions in Taiwan, under historical and climate scenario conditions. The recharge rates at the main river gauge stations in the groundwater regions were assessed using historical data. Regression equations between rainfall and groundwater recharge quantities were developed for the ten groundwater regions. The assessment results can be used for recharge evaluation in Taiwan. The climate change estimation results show that climate change would increase groundwater recharge by 32.6% or decrease it by 28.9% on average under the climate scenarios, with respect to the baseline quantity in Taiwan. The impact of climate change on groundwater systems may be positive. This study proposes a method for assessing the impact of climate change on groundwater systems. The assessment results provide important information for strategy development in groundwater resources management.


2021 ◽  
pp. 1-23
Author(s):  
S.E. Tsentis ◽  
V.G. Gkoutzamanis ◽  
A.D. Gaitanis ◽  
A.I. Kalfas

ABSTRACT This paper presents a performance analysis on a novel engine concept, currently under development, in order to achieve hybrid air-breathing rocket technology. A component-level approach has been developed to simulate the performance of the engine at Mach 5, and the thermodynamic interaction of the different working fluids has been analysed. The bypass ramjet duct has also been included in the model. This facilitates the improved evaluation of performance parameters. The impact of ram drag induced by the intake of the engine has also been demonstrated. The whole model is introduced into a multi-platform application for aeroengine simulation to make it accessible to the interested reader. Results show that the bypass duct modelling increases the overall efficiency by approximately 7%. The model calculates the specific impulse at approximately 1800 seconds, which is 4 times higher than any chemical rocket.


2014 ◽  
Vol 15 (4) ◽  
pp. 1517-1531 ◽  
Author(s):  
Gerhard Smiatek ◽  
Harald Kunstmann ◽  
Andreas Heckl

Abstract The impact of climate change on the future water availability of the upper Jordan River (UJR) and its tributaries Dan, Snir, and Hermon located in the eastern Mediterranean is evaluated by a highly resolved distributed approach with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) run at 18.6- and 6.2-km resolution offline coupled with the Water Flow and Balance Simulation Model (WaSiM). The MM5 was driven with NCEP reanalysis for 1971–2000 and with Hadley Centre Coupled Model, version 3 (HadCM3), GCM forcings for 1971–2099. Because only one regional–global climate model combination was applied, the results may not give the full range of possible future projections. To describe the Dan spring behavior, the hydrological model was extended by a bypass approach to allow the fast discharge components of the Snir to enter the Dan catchment. Simulation results for the period 1976–2000 reveal that the coupled system was able to reproduce the observed discharge rates in the partially karstic complex terrain to a reasonable extent with the high-resolution 6.2-km meteorological input only. The performed future climate simulations show steadily rising temperatures with 2.2 K above the 1976–2000 mean for the period 2031–60 and 3.5 K for the period 2070–99. Precipitation trends are insignificant until the middle of the century, although a decrease of approximately 12% is simulated. For the end of the century, a reduction in rainfall ranging between 10% and 35% can be expected. Discharge in the UJR is simulated to decrease by 12% until 2060 and by 26% until 2099, both related to the 1976–2000 mean. The discharge decrease is associated with a lower number of high river flow years.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 139-140
Author(s):  
Frédéric A Vangroenweghe

Abstract Post-weaning Escherichia coli diarrhea (PWD) remains a major cause of economic losses for the pig industry. PWD, caused by enterotoxigenic E. coli (ETEC), typically provokes mild to severe watery diarrhea between 5–10 days after weaning. Recently, an oral live bivalent E. coli F4/F18 vaccine (Coliprotec® F4/F18; Elanco) was approved on the European market, which reduces the impact of PWD provoked by F4-ETEC and F18-ETEC. The objective was to compare technical results and antibiotic use following E. coli F4/F18 vaccination with previous standard therapeutic approach under field conditions. A 1600-sow farm (weaning at 26 days) with diagnosed problems of PWD due to F18-ETEC was selected. Piglets were vaccinated at 21 days with the oral live bivalent E. coli F4/F18 vaccine. At weaning, no standard group medication (ZnO and antibiotics) was applied for prevention of PWD. Several performance parameters were collected: treatment incidence (TI100), mortality and days in nursery. Statistical analysis was performed using JMP 14.0 – comparison of means. Oral E. coli F4/F18 vaccination significantly reduced TI100 (7 ± 2 days to 0 ± 1 days; P < 0.05). Mortality rate remained stable (2.05% in Control to 1.96% in Vaccinated group; P < 0.05). Days in nursery (40 ± 3 days) remained at the same level compared to pre-vaccination. The results show that live E. coli F4/F18 vaccination against PWD has led to similar technical performance parameters and mortality, in combination with a significant reduction in medication use. In conclusion, control of PWD through oral vaccination is a successful option in order to prevent piglets from the negative clinical outcomes of F18-ETEC infection during the post-weaning period.


Machines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Svenja Kalt ◽  
Karl Ludwig Stolle ◽  
Philipp Neuhaus ◽  
Thomas Herrmann ◽  
Alexander Koch ◽  
...  

The consideration of the thermal behavior of electric machines is becoming increasingly important in the machine design for electric vehicles due to the adaptation to more dynamic operating points compared to stationary applications. Whereas, the dependency of machine efficiency on thermal behavior is caused due to the impact of temperature on the resulting loss types. This leads to a shift of efficiency areas in the efficiency diagram of electric machines and has a significant impact on the maximum load capability and an impact on the cycle efficiency during operation, resulting in a reduction in the overall range of the electric vehicle. Therefore, this article aims at analyzing the thermal load limits of induction machines in regard to actual operation using measured driving data of battery electric vehicles. For this, a thermal model is implemented using MATLAB® and investigations to the sensitivity of model parameters as well as analysis of the continuous load capacity, thermal load and efficiency in driving cycles under changing boundary conditions are conducted.


Sign in / Sign up

Export Citation Format

Share Document