scholarly journals Fagotherapy of cows mastitis as an alternative to antibiotics in the system of obtaining environmentally safe milk

2018 ◽  
Vol 20 (88) ◽  
pp. 42-47 ◽  
Author(s):  
Yu. V. Horiuk

The global market for environmentally friendly food products has been developing rapidly in recent decades and is becoming an alternative to the consumption of harmful, environmentally hazardous products. The prohibition of the use of chemically-synthesized traditional veterinary drugs or antibiotics for prophylactic purposes is one of the requirements for conducting an organic dairy farm. The purpose of the work is to review literature on the possible use of bacteriophages for the treatment of mastitis of cows with the aim of obtaining ecologically safe milk. Mastitis is among the most common diseases of cows. The particular importance in the onset of the disease is the microbial factor. A wide range of microorganisms that can cause mastitis, and the significant spread of these bacteria, make complete eradication of mastitis unlikely. Drugs are used for the treatment of mastitis, which in most cases contain antimicrobial substances such as antibiotics, sulfanilamides, nitrofurans etc. Despite the great success in treating antibiotics, there are a number of negative side effects, including the emergence of antibiotic-resistant microorganisms. An obvious alternative to the use of antibacterial drugs in the treatment of cows mastitis is the use of highly effective ecologically safe drugs based on raw materials of plant, mineral and animal origin. Currently, considerable experience in the successful use of phages for the treatment of bacterial infections has been accumulated in foreign and domestic medical and scientific practice. The use of bacteriophages in compliance with generally accepted principles can achieve a significant therapeutic result. The antibacterial effect of bacteriophage drugs is due to the introduction of the phage genome into a bacterial cell, followed by its reproduction and lysis of the infected cell. Phages released into the environment as a result of lysis bacteria re-infect and lysis of other bacterial cells, acting until the complete destruction of pathogenic bacteria in the inflammatory site. Bacteriophages have several advantages: specificity of action, absence of inhibition of normal microflora and allergic reaction. In addition, a weighty argument in favor of expediency of clinical use of bacteriophages is almost complete absence of side effects, and, consequently, contraindications.

Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 192 ◽  
Author(s):  
Feng Wang ◽  
Xinyu Ji ◽  
Qiupeng Li ◽  
Guanling Zhang ◽  
Jiani Peng ◽  
...  

New strategies against antibiotic-resistant bacterial pathogens are urgently needed but are not within reach. Here, we present in vitro and in vivo antimicrobial activity of TSPphg, a novel phage lysin identified from extremophilic Thermus phage TSP4 by sequencing its whole genome. By breaking down the bacterial cells, TSPphg is able to cause bacteria destruction and has shown bactericidal activity against both Gram-negative and Gram-positive pathogenic bacteria, especially antibiotic-resistant strains of Klebsiella pneumoniae, in which the complete elimination and highest reduction in bacterial counts by greater than 6 logs were observed upon 50 μg/mL TSPphg treatment at 37 °C for 1 h. A murine skin infection model further confirmed the in vivo efficacy of TSPphg in removing a highly dangerous and multidrug-resistant Staphylococcus aureus from skin damage and in accelerating wound closure. Together, our findings may offer a therapeutic alternative to help fight bacterial infections in the current age of mounting antibiotic resistance, and to shed light on bacteriophage-based strategies to develop novel anti-infectives.


2012 ◽  
Vol 56 (7) ◽  
pp. 3841-3848 ◽  
Author(s):  
Tianhong Dai ◽  
Barbara Garcia ◽  
Clinton K. Murray ◽  
Mark S. Vrahas ◽  
Michael R. Hamblin

ABSTRACTUVC light has long been known to be highly germicidal but has not been much developed as a therapy for infections. This study investigated the potential of UVC light for the prophylaxis of infections developing in highly contaminated superficial cutaneous wounds.In vitrostudies demonstrated that the pathogenic bacteriaPseudomonas aeruginosaandStaphylococcus aureuswere inactivated at UVC light exposures much lower than those needed for a similar effect on mammalian keratinocytes. Mouse models of partial-thickness skin abrasions infected with bioluminescentP. aeruginosaandS. aureuswere developed. Approximately 107bacterial cells were inoculated onto wounds measuring 1.2 by1.2 cm on the dorsal surfaces of mice. UVC light was delivered at 30 min after bacterial inoculation. It was found that for both bacterial infections, UVC light at a single radiant exposure of 2.59 J/cm2reduced the bacterial burden in the infected mouse wounds by approximately 10-fold in comparison to those in untreated mouse wounds (P< 0.00001). Furthermore, UVC light increased the survival rate of mice infected withP. aeruginosaby 58.3% (P= 0.0023) and increased the wound healing rate in mice infected withS. aureusby 31.2% (P< 0.00001). DNA lesions were observed in the UVC light-treated mouse wounds; however, the lesions were extensively repaired by 48 h after UVC light exposure. These results suggested that UVC light may be used for the prophylaxis of cutaneous wound infections.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Octavio Silva-García ◽  
Juan J. Valdez-Alarcón ◽  
Víctor M. Baizabal-Aguirre

Innate immunity against pathogenic bacteria is critical to protect host cells from invasion and infection as well as to develop an appropriate adaptive immune response. During bacterial infection, different signaling transduction pathways control the expression of a wide range of genes that orchestrate a number of molecular and cellular events to eliminate the invading microorganisms and regulate inflammation. The inflammatory response must be tightly regulated because uncontrolled inflammation may lead to tissue injury. Among the many signaling pathways activated, the canonical Wnt/β-catenin has been recently shown to play an important role in the expression of several inflammatory molecules during bacterial infections. Our main goal in this review is to discuss the mechanism used by several pathogenic bacteria to modulate the inflammatory response through the Wnt/β-catenin signaling pathway. We think that a deep insight into the role of Wnt/β-catenin signaling in the inflammation may open new venues for biotechnological approaches designed to control bacterial infectious diseases.


2018 ◽  
Vol 10 (4) ◽  
pp. 950 ◽  
Author(s):  
Vincenzo Torretta ◽  
Ioannis Katsoyiannis ◽  
Paolo Viotti ◽  
Elena Rada

Glyphosate is a synthesis product and chemical substance that entered in the global market during the 70s. In the beginning, the molecule was used as an active principle in a wide range of herbicides, with great success. This was mainly due to its systemic and non-selective action against vegetable organisms and also to the spread of Genetically Modified Organism (GMO) crops, which over the years were specifically created with a resistance to glyphosate. To date, the product is, for these reasons, the most sprayed and most used herbicide in the world. Because of its widespread diffusion into the environment, it was not long before glyphosate found itself at the center of an important scientific debate about its adverse effects on health and environment. In fact, in 2015 the IARC (International Agency for Research on Cancer, Lyon, France), an organization referred to as the specialized cancer agency of the World Health Organization (WHO, Geneva, Switzerland), classified the substance as “likely carcinogenic” to humans. This triggered an immediate and negative reaction from the producer, who accused the Agency and claimed that they had failed to carry out their studies properly and that these conclusions were largely contradictory to published research. Additionally, in 2015, just a few months after the IARC monography published on glyphosate, the EFSA (European Food Safety Authority, Parma, Italy), another WHO related organization, declared that it was “unlikely” that the molecule could be carcinogenic to humans or that it could cause any type of risk to human health. The conflict between the two organizations of the World Health Organization triggered many doubts, and for this reason, a series of independent studies were launched to better understand what glyphosate’s danger to humans and the environment really was. The results have brought to light how massive use of the herbicide has created over time a real global contamination that has not only affected the soil, surface and groundwater as well as the atmosphere, but even food and commonly used objects, such as diapers, medical gauze, and absorbent for female intimate hygiene. How human health is compromised as a result of glyphosate exposure is a topic that is still very debatable and still unclear and unambiguous. This paper is a review of the results of the main independent recent scientific studies.


2021 ◽  
Author(s):  
Elyza A. Do ◽  
Casey M. Gries

Potassium is an essential mineral nutrient required by all living cells for normal physiological function. Maintaining intracellular potassium homeostasis during bacterial infection is therefore a requirement for the survival of both host and pathogen. However, pathogenic bacteria require potassium transport not only to fulfill nutritional and chemiosmotic requirements, but potassium has been shown to directly modulate virulence gene expression, antimicrobial resistance, and biofilm formation. Host cells also require potassium to maintain fundamental biological processes as such as renal function, muscle contraction, and neuronal transmission, however, potassium flux also contributes to critical immunological and antimicrobial processes such as cytokine production and inflammasome activation. Here we review the role and regulation of potassium transport and signaling during infection in both mammalian and bacterial cells and highlight the importance of potassium to the success and survival of each organism.


2020 ◽  
Vol 14 ◽  
pp. 117863022094224
Author(s):  
Lorina Badger-Emeka ◽  
Yasmeen Al-Mulhim ◽  
Fatimah Al-Muyidi ◽  
Maram Busuhail ◽  
Salma Alkhalifah ◽  
...  

Background: The 21st century has seen a wide range of diseases resulting from zoonotic infections, of which bacterial infections have led to outbreaks of food-borne diseases. Aim: The study looks at bacterial pathogen carriage by farm rats and their antimicrobial susceptibility, with the view of providing insights for antimicrobial surveillance. Method: Farm rats of Rattus rattus species where randomly collected alive from farms in Al-Ahsa using food baits. They were anaesthetize with urethane within 4 h of collection and were unconscious for the collection of samples. Basic bacteriological culturing methods were used for culturing of bacterial isolates on selective media while the Vitek 2 compact automated system (BioMerieux, Marcy L’Etoile, France) was used for bacteria identification and antimicrobial susceptibility test. Obtained data were analysed using chi-square and paired t-test with significant difference between sensitive and resistance to antimicrobial susceptibility taken at P < .05. Results: Isolated Gramme-negative pathogenic bacteria included strains of Escherichia coli, Pseudomonas oryzihabitans, strains of Pseudomonas aeruginosa, and Salmonella. For the Gramme-positive bacteria, 4 strains of Staphylococcus aureus were encountered. Other Gramme-positive bacteria were coagulase-negative Staphylococcal species (CoNS) as well as Staphylococcus lugdunensis. There was a 100% resistance to the penicillins and a high resistance to imipenem (71%) by the Staphylococcal isolates. Resistance was also high against the β-lactams by the Gramme-positive bacteria isolates. For the Gramme-negative bacteria, there was a higher than 50% resistance by the isolates against the following antibiotics: ampicillin (78%), amoxicillin/clavulanic acid (67%), cefotaxime (77%), ceftazidime (67%), cefepime (78%), norfloxacin (67%), nitrofurantoin (67%), and trimethoprim/sulfamethoxazole (78%). Conclusion: The results showed high antimicrobial resistance that will need monitoring for control of spread from farm rats to humans.


2022 ◽  
Vol 12 ◽  
Author(s):  
Youcheng Yang ◽  
Jiajun Chen ◽  
Linqing Lu ◽  
Zizheng Xu ◽  
Feng Li ◽  
...  

In the lumen of blood vessels, there are large numbers of erythrocytes, which are approximately 95% of the total blood cells. Although the function of erythrocytes is to transport oxygen in the organism, recent studies have shown that mammalian and teleost erythrocytes are involved in the immune response against bacterial infections. However, the immune mechanisms used by avian erythrocytes are not yet clear. Here, we demonstrated that erythrocytes from goose have the ability to phagocytose as well as conduct antimicrobial activity. Firstly, we revealed the phagocytosis or adhesion activity of goose erythrocytes for latex beads 0.1-1.0 μm in diameter by fluorescence microscopy, and scanning and transmission electron microscopy. The low cytometry results also proved that goose erythrocytes had a wide range of phagocytic or adhesion activity for different bacteria. Followed, the low cytometry analysis data further explored that the goose erythrocytes contain the ability to produce reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) in response to bacterial stimulation, and also up-regulated the expression of NOX family includes NOX1 and NOX5. Finally, we also found that goose erythrocytes showed a powerful antibacterial activity against all the three bacteria, meanwhile the stimulation of three kinds of bacteria up-regulated the expression of inflammatory factors, and increased the production of antioxidant enzymes to protect the cells from oxidative damage. Herein, our results demonstrate that goose Erythrocytes possess a certain phagocytic capacity and antioxidant system, and that the antimicrobial activity of erythrocytes can occurred through the production of unique respiratory burst against foreign pathogenic bacteria, which provides new clues to the interaction between bacteria and avian erythrocytes.


2021 ◽  
Vol 15 (1) ◽  
pp. 232-239
Author(s):  
Anisa Lutfia ◽  
Erman Munir ◽  
Yurnaliza Yurnaliza ◽  
Mohammad Basyuni

The emergence of bacterial infections caused by resistant strains poses a threat to the development of new antibiotics. The majority of antibiotics being produced has been accelerated through the finding of newly reported natural products, especially those originated and produced by biological sources. Endophytic fungi residing in medicinal plants may be regarded as potential sources and encourage the exploration of more plant species for their antimicrobial activity. Our current study reports on the assemblage of endophytic fungi that colonize the rhizomes, using Globba patens a representative of Zingiberaceous species from North Sumatra. Twenty-six fungal morphotypes were obtained and differentiated by their morphological features. Each isolate was tested against human pathogenic bacteria namely Staphylococcus aureus ATCC® 29213™, Methicillin-resistant S. aureus (MRSA) ATCC® 43300™, Escherichia coli ATCC® 25922™, and Enteropathogenic E. coli (EPEC) K11 in a dual culture assay. The results revealed that the majority of fungal isolates were strong antagonists against S. aureus and E. coli but not against MRSA and EPEC. Isolate Gp07 was the most potential fungus with a wide range of antibacterial activities and was subjected to further species-level identification based on its morphological characteristics and DNA sequence in the ITS-rDNA region. The isolate Gp07 was identified as Colletotrichum siamense, yet the presence of C. siamense in the rhizome of G. patens is not fully understood while possibly being characterized as the antibiotics-producing agent in the future.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1790 ◽  
Author(s):  
Ana Maria Diez-Pascual

Thermosetting polymers derived from vegetable oils (VOs) exhibit a wide range of outstanding properties that make them suitable for coatings, paints, adhesives, food packaging, and other industrial appliances. In addition, some of them show remarkable antimicrobial activity. Nonetheless, the antibacterial properties of these materials can be significantly improved via incorporation of very small amounts of metal oxide nanoparticles (MO-NPs) such as TiO2, ZnO, CuO, or Fe3O4. The antimicrobial efficiency of these NPs correlates with their structural properties like size, shape, and mainly on their concentration and degree of functionalization. Owing to their nanoscale dimensions, high specific surface area and tailorable surface chemistry, MO-NPs can discriminate bacterial cells from mammalian ones, offering long-term antibacterial action. MO-NPs provoke bacterial toxicity through generation of reactive oxygen species (ROS) that can target physical structures, metabolic paths, as well as DNA synthesis, thereby leading to cell decease. Furthermore, other modes of action—including lipid peroxidation, cell membrane lysis, redox reactions at the NP–cell interface, bacterial phagocytosis, etc.—have been reported. In this work, a brief description of current literature on the antimicrobial effect of VO-based thermosetting polymers incorporating MO-NPs is provided. Specifically, the preparation of the nanocomposites, their morphology, and antibacterial properties are comparatively discussed. A critical analysis of the current state-of-art on these nanomaterials improves our understanding to overcome antibiotic resistance and offers alternatives to struggle bacterial infections in public places.


2019 ◽  
Vol 98 (3) ◽  
pp. 322-330 ◽  
Author(s):  
Z. Ren ◽  
D. Kim ◽  
A.J. Paula ◽  
G. Hwang ◽  
Y. Liu ◽  
...  

Biofilm formation is a key virulence factor responsible for a wide range of infectious diseases, including dental caries. Cariogenic biofilms are structured microbial communities embedded in an extracellular matrix that affords bacterial adhesion-cohesion and drug tolerance, making them difficult to treat using conventional antimicrobial monotherapy. Here, we investigated a multitargeted approach combining exopolysaccharide (EPS) matrix-degrading glucanohydrolases with a clinically used essential oils–based antimicrobial to potentiate antibiofilm efficacy. Our data showed that dextranase and mutanase can synergistically break down the EPS glucan matrix in preformed cariogenic biofilms, markedly enhancing bacterial killing by the antimicrobial agent (3-log increase versus antimicrobial alone). Further analyses revealed that an EPS-degrading/antimicrobial (EDA) approach disassembles the matrix scaffold, exposing the bacterial cells for efficient killing while concurrently causing cellular dispersion and “physical collapse” of the bacterial clusters. Unexpectedly, we found that the EDA approach can also selectively target the EPS-producing cariogenic bacteria Streptococcus mutans with higher killing specificity (versus other species) within mixed biofilms, disrupting their accumulation and promoting dominance of commensal bacteria. Together, these results demonstrate a dual-targeting approach that can enhance antibiofilm efficacy and precision by dismantling the EPS matrix and its protective microenvironment, amplifying the killing of pathogenic bacteria within.


Sign in / Sign up

Export Citation Format

Share Document