scholarly journals Effects of Zinc Sulfate or Propylene Glycol on Intake, Digestibility, and Forage Selection by Grazing Sheep in a Semi-Arid Region During the Rainy Season

Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 867
Author(s):  
Hélio Costa ◽  
Eloisa Saliba ◽  
Diego Galvani ◽  
Marco Bomfim ◽  
Ângela Maria Lana ◽  
...  

The objective of this study was to determine intake, nutrient availability, and animal selection of major forage species in sheep supplemented with zinc sulfate or propylene glycol in Caatinga-native pastures during the rainy season. Twenty-four mixed Santa Inês sheep, all non-castrated males, with initial weight of 19.3 ± 2.52 kg and 4 ± 0.35 months of age, were distributed in a complete randomized design into three treatments: Control (CT)—concentrate supplemented at 0.7% of body weight; CT + 300 mg of Zn day−1; CT + 2.5 mL of propylene glycol/kg LW0.75·day−1. Measurements were done in four periods during the rainy season, with 28 days of interval between each measurement. Differences were observed in the composition of the ruminal extrusa samples from pastures for crude protein (CP) (192 to 131 g kg−1), in vitro dry matter digestibility (IVDMD) (537 to 441 g kg−1), and in vitro organic matter digestibility (IVOMD) (468 to 359 g kg−1) in March and June, respectively. There was no effect for treatments, neither for the treatment x period interaction on organic matter (OM), CP, and fibrous fraction intake (p > 0.05). Organic matter intake (OMI) was, on average 23.9% greater in March compared to June. CP intake decreased monthly (p < 0.05). Fibrous fraction intake was greater in March (p < 0.05), with reductions of 34.8, 33.3, and 39.4% in June, respectively, for neutral detergent fiber (NDF), acid detergent fiber (ADF), and cellulose (CEL) fractions. There was no effect of treatments (p > 0.05) on selection of vegetal species present in the pasture. On the other hand, the proportion between ingested species changed over the experimental period. Greater intakes were found in April compared to May, except for Zizyphus joazeiro intake, which was greater in March (p < 0.05). In conclusion, based on the finding of this study, Zn and propylene glycol (PG) supplementation did not improve sheep nutrient intake when grazing Caatinga-native pasture in the rainy season. Caatinga-native pasture biomass has adequate protein and digestible organic matter levels during early rainy season. Over this period, however, the advanced maturity of the plants and the reduced availability of pasture may result in variations of intake by the animals. In the months of April to June, a reduced energy supply is caused by reduced nutritive values of pastures, which contributes to inefficient protein utilization and reduced feed intake.

Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 395
Author(s):  
Hélio Costa ◽  
Eloisa Saliba ◽  
Marco Bomfim ◽  
Ângela Maria Lana ◽  
Ana Luiza Borges ◽  
...  

The aim of this study was to evaluate the effects of Zinc sulfate and propylene glycol (PG) on methane (CH4) emission, nutrient intake, digestibility, and production in sheep grazing on a native Caatinga (Brazilian semi-arid savannah) pasture during the rainy season (from March to June 2014). Fifteen mixed Santa Inês sheep, all non-castrated males, with initial body weight of 19.8 ± 1.64 kg, and 4 ± 0.35 months of age, were distributed in a complete randomized design into three treatments: control (CT)—concentrate supplemented at 0.7% of body weight; CT + 300 mg of Zn/day; and CT + 2.5 mL of propylene glycol/kg LW0.75/day. Measurements were done in four periods during the rainy season, with 28 days of interval between each measurement. CH4 emission was measured using the SF6 tracer gas technique. CH4 emission per day was greater in PG than in CT and Zn (p < 0.05). However, no additive effect was observed on the intakes of organic matter (OM) and neutral detergent fiber (NDF), or on CH4 emission expressed as a function of OM and NDF intakes (p > 0.05). Across the months of the trial, OM and NDF intakes were greater in March, while the greatest emission of CH4 (g/day and g by g/OM intake) was observed in May (p < 0.05). Total CH4 emission (kg) from March to June (112 days of evaluation) was greater in PG compared with CT and Zn (p < 0.05). Zinc and PG had no effect on total CH4 emission when it was expressed per unit of body weight gain or carcass production (p > 0.05). The results of this study indicate that Zinc sulfate and propylene glycol have no beneficial effects in mitigating sheep CH4 emission. The CH4 emissions originated from sheep grazing native Caatinga pasture change throughout the rainy season due to fluctuations in availability and quality of pasture biomass. Moreover, the inclusion of zinc sulfate or propylene glycol did not improve animal feed intake, nutrient digestibility, and animal performance.


2020 ◽  
Vol 36 (1) ◽  
Author(s):  
Neliton Flores Kasper ◽  
Gabriela Ceratti Hoch ◽  
Othon Dalla Colletta Altermann ◽  
Fabiane Quevedo Da Rosa ◽  
Leonardo Ereno Tadielo ◽  
...  

The aim of this study was to measure the chemical composition, microbiological profile, fermentative characteristics and the aerobic stability of the olive bagasse silages in natura and added with corn bran, soybean and rice bran in different times of sampling. The was completely randomized design in arrangement of plots subdivided in 4x3 time, with five replications. In the plots were allocated the main treatments, and in the subplots the sampling times were allocated. The fermentative characteristics was studied by determination of the dry matter (DM) content, pH and ammoniacal nitrogen (NH3-N), the microbiological by determining the populations of filamentous fungi, Clostridia, lactic acid bacteria and enterobacteria. In the nutrient profile study, the contents of mineral matter (MM), organic matter (OM), crude protein (CP), ether extract (EE), neutral detergent fiber (NDF), acid detergent fiber (ADF), lignin, cellulose, hemicellulose, nitrogen bound to acid detergent fiber (NIDA), nitrogen bound to neutral detergent fiber (NIDN), carbohydrate and total digestible nutrient (TDN). At the ensilage moment, it also has been determined in vitro dry matter digestibility (IVDMD) and in vitro digestibility of organic matter (IVDOM). The use of corn and rice bran provided a better fermentative profile in the studied ensilage. The pH of the silages added corn and rice bran has presented in 4.00 and 4.06 after 112 storage days, consequently. The adding of soybean bran provided the greatest CP values and non-fibrous carbohydrates (NFC) after the fermentative period, been it 131.55 g kg-1 of DM for CP and 176.28 g kg-1 of DM for NFC. The treatments without bran adding and rice bran added have demonstrated IVDOM levels of 581.12 g ka-1 od DM and 604.51 g kg-1 of DM, consequently. The studied meals improve the nutritional profile of the studied silages and are potentially usable as additives in olive bagasse silages.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 879
Author(s):  
Seong-Shin Lee ◽  
Jeong-Seok Choi ◽  
Dimas Hand Vidya Paradhipta ◽  
Young-Ho Joo ◽  
Hyuk-Jun Lee ◽  
...  

This research was conducted to determine the effects of selected inoculant on the silage with different wilting times. The ryes were unwilted or wilted for 12 h. Each rye forage was ensiled for 100 d in quadruplicate with commercial inoculant (Lactobacillus plantarum sp.; LPT) or selected inoculant (Lactobacillus brevis 100D8 and Leuconostoc holzapfelii 5H4 at 1:1 ratio; MIX). In vitro dry matter digestibility and in vitro neutral detergent fiber digestibility were highest in the unwilted MIX silages (p < 0.05), and the concentration of ruminal acetate was increased in MIX silages (p < 0.001; 61.4% vs. 60.3%) by the increase of neutral detergent fiber digestibility. The concentration of ruminal ammonia-N was increased in wilted silages (p < 0.001; 34.8% vs. 21.1%). The yeast count was lower in the MIX silages than in the LPT silages (p < 0.05) due to a higher concentration of acetate in MIX silages (p < 0.05). Aerobic stability was highest in the wilted MIX silages (p < 0.05). In conclusion, the MIX inoculation increased aerobic stability and improved fiber digestibility. As a result of the wilting process, ammonia-N in silage decreased but ruminal ammonia-N increased. Notably, the wilted silage with applied mixed inoculant had the highest aerobic stability.


1988 ◽  
Vol 68 (3) ◽  
pp. 787-799 ◽  
Author(s):  
V. GIRARD ◽  
G. DUPUIS

In view of the large variation found in plant cell wall digestibilities with ruminants, an attempt was made to group 124 feeds into different lignification classes (clusters) on the basis of chemical characteristics. Each feed cluster was described using a structural coefficient [Formula: see text] that related the potentially digestible fiber (PDF, %) to the ratio between lignin and cell wall volume. The optimum number of clusters was determined iteratively by performing a regression of the apparent digestibility of dry matter at maintenance level (DDM1, %) against the PDF and cell soluble (SOL, %) contents of feeds. The [Formula: see text] coefficients varied from 0.05 (grains, N = 13) to 1.85 (corn silage, N = 3) and increased with the maturity of the grasses from 0.88 (legumes, vegetative cool season grasses, N = 26) to 1.33 (mature, cool season grasses, N = 19). Predicted PDF were closely correlated (r > 0.9, P < 0.01) to in vitro cell wall disappearances (IVCWD). Apparently digestible cell wall in four grasses and four legumes increased linearly with 96-h IVCWD and standard error (SE) was similar to the SE of predicted apparent digestible SOL from SOL concentrations. Assuming that similarity between SE could be also observed in larger samples, PDF and SOL were used in summative equations to predict apparent dry matter digestibility. DDM1 discounted for intake (DDM1 – 4, %) was regressed against SOL and PDF concentrations of 87 feeds:[Formula: see text]with ds and df, the true digestibilities of SOL and PDF. Estimates of ds and df were 0.98 and 0.95 for a zero-production (maintenance) level of intake, and 0.91 and 0.79 for an intake level four times maintenance. Since the true digestibility of the PDF component was only 4% – 13% lower than that of the cell soluble component, the concentration of PDF in cell wall was the major determinant in the variation in apparent digestibility of forages. Key words: lignin, neutral detergent fiber, true digestibility, cluster analysis, feeds


1998 ◽  
Vol 1998 ◽  
pp. 69-69
Author(s):  
S. Fakhri ◽  
A. R. Moss ◽  
D.I. Givens ◽  
E. Owen

The gas production (GP) technique has previously been used to estimate the gas volume (fermentable energy (FE)) of compound feed ingredients for ruminants (Newbold et al., 1996). It was shown that the FE content of feed mixtures was represented by the combination of the total gas from the incubation of the individual feeds. However this additivity might not be consistent throughout the incubation period. The objectives were to test whether 1. other GP parameters give better estimates of FE for simple mixtures and are they additive; 2. whether organic matter apparently degraded in the rumen (OMADR) explain differences in GP; and 3. to find out if there are any other better measures than OMADR for estimating FE.


2018 ◽  
Vol 39 (5) ◽  
pp. 2071
Author(s):  
João De Assis Farias Filho ◽  
Fabiana Luiza Matielo de Paula ◽  
Adalberto Luiz de Paula ◽  
Wagner Paris ◽  
Fabrício Ghinzelli ◽  
...  

The objective of this work was to evaluate the effects of irrigation and nitrogen fertilization on the bromatological quality, forage production, and botanical and structural composition of Tifton 85 (Cynodon sp.) pastures overseeded with black oat (Avena strigosa). Four treatments were evaluated in a 2 × 2 factorial scheme (irrigated and non-irrigated × fertilized and non-fertilized), with three replicates, in a completely randomized design. In irrigated paddocks, the irrigation system was activated when the soil matric potential reached a value equal to, or higher than, 10 kPa and 135 kg N ha-1 was applied to fertilized paddocks, divided into four applications. The forage mass pre- and post-grazing, total forage production, and the botanical, structural, and bromatological composition of the pastures were evaluated. No interaction was observed between the irrigation and nitrogen fertilization factors for any of the variables and no significant differences were observed in forage mass between pre- and post-grazing or in Tifton leaf and stem percentages. Nitrogen fertilization had a significant effect on forage production, which was 2626.41 kg dry matter (DM) ha-1 higher in fertilized pastures than in unfertilized pastures. In addition, fertilization resulted in a lower percentage of dead material (6.66%), higher percentage of oat leaves (30.84%), higher leaf:stem ratio (1:45), higher crude protein content (24.13%), lower levels of neutral detergent fiber (NDF) (64.57%) and acid detergent fiber (ADF) (32.86%), and higher in vitro dry matter digestibility (73.01%) than in unfertilized pastures. The use of irrigation did not influence total forage production, however, it resulted in pastures with lower NDF (65.97%) and ADF (33.54%), and higher in vitro dry matter digestibility (73.48%) than unirrigated pastures. Nitrogen fertilization produced improvements in pasture structure, associated with higher dry matter yield and bromatological quality, while irrigation only produced pastures with lower fiber content and greater digestibility.


2016 ◽  
Vol 5 (1) ◽  
Author(s):  
K. Dakaew ◽  
A. Abrar ◽  
A. Cherdthong

The main objective of this experiment was to assess the effect of multistage ammoniation on fiber fraction and digestibility of maize stover in vitro. Maize stover was treated by a multistage technique of different urea connect ration (8%, 4%, and 2%) and incubation for 14 days at room temperature.Digestibility of NDF, ADF, ADL, hemicellulose, and cellulose, in vitro dry matter digestibility (DMD), organic matter digestibility (OMD), NH3-N, total volatile fatty acid (VFA) and pH concentration were observed. However treatment maize stover and multistage ammoniation maize stover were composed by using T-test student as the statistic. There were not significantly different on fiber fraction and digestibility of maize stover. However, multistage ammoniation decreased ADF fraction by 56.67% to45.39%. The DM digestibility of multistage ammoniation on fiber fraction and digestibility of maize stover also increased by 35.18 to 45.91. The total VFA and N-ammonia of multistage ammoniation on fiber fraction and digestibility of maize stover also higher than control.Keywords: Ammoniation, Digestibility, in vitro, Maize stover


2015 ◽  
Vol 2 (3) ◽  
pp. 17
Author(s):  
Indrayani Indrayani ◽  
Harapin Hafid ◽  
Dian Agustina

ABSTRACTThis study aims to determine the digestibility of dry matter and organic matter level waste silage mixed vegetables and Gliricidia leaves were tested in vitro. This study used a completely randomized design with 3 treatments and 3 replications. Each of these treatments is R0 (Gliricidia leaves 100%), R1 (Gliricidia leaves 70% + 30% silage vegetable waste), and R2 (Gliricidia leaves 40% + 60% silage vegetable waste). Data were analyzed using analysis of variance (ANOVA) and further testing using the test Honestly Significant Difference (HSD). The results of ANOVA showed that the mixture of vegetable waste silage was highly significant (p <0.05) on dry matter digestibility and significantly (p <0.05) on the digestibility of organic matter. It can be concluded that the mixed of vegetable waste silage and Gliricidia leaves can improved digestibility of dry matter and organic matter, treatment of 40% and 60% Gliricidia leaves plus waste vegetable produce silage dry matter digestibility and percentage of organic matter is best (72,24% and 68,19%).Keyword: Silage vegetable waste, gliricidia leaves, dry and organic matter digestibilityABSTRAKPenelitian ini bertujuan untuk mengetahui kecenaan bahan kering dan bahan organik tingkat campuran silase sampah sayur dan daun gamal yang diuji secara in vitro. Penelitian ini menggunakan Rancangan Acak Lengkap dengan 3 perlakuan dan 3 ulangan. Masing-masing perlakuan tersebut ialah R0 (daun gamal 100%), R1 (daun gamal 70% + silase sampah sayur 30%), dan R2 (daun gamal 40% + silase sampah sayur 60%). Data yang diperoleh dianalisis dengan menggunakan analisis sidik ragam (ANOVA) dan uji lanjut menggunakan uji Beda Nyata Jujur (BNJ). Hasil analisis sidik ragam menunjukkan bahwa campuran silase sampah sayur berpengaruh sangat nyata (p<0,05) terhadap kecernaan bahan kering dan berpengaruh nyata (p<0,05) terhadap kecernaan bahan organik. Dapat disimpulkan bahwa perlakuan campuran silase sampah sayur dan daun gamal dapat meningkatkan kecernaan bahan kering dan bahan organik, perlakuan 40% daun gamal dan 60% silase sampah sayur menghasilkan persentase kecernaan bahan kering dan bahan organik yang terbaik yaitu (72,24% dan 68,19%).Kata kunci : Silase sampah sayur, daun gamal, kecernaan bahan kering, dan bahan organik.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1205
Author(s):  
Musen Wang ◽  
Fujin Zhang ◽  
Xinxin Zhang ◽  
Ying Yun ◽  
Lei Wang ◽  
...  

The objective of this work was to evaluate the pH, chemical composition, minerals, vitamins, and in vitro rumen fermentation characteristics of silage prepared with lucerne, sweet maize stalk (MS), and their mixtures. Freshly chopped lucerne and MS were combined in ratios of 100:0 (M0, control), 80:20 (M20), 60:40 (M40), 40:60 (M60), 20:80 (M80), and 0:100 (M100) on a fresh matter basis. Each treatment was prepared in triplicate, and a total of eighteen silos were fermented for 65 days. After 65 days of fermentation, the pH values in M0, M20, M40, M60, M80, and M100 silages were 5.47, 4.84, 4.23, 4.13, 3.79, and 3.61, respectively. As the MS proportion in the mixtures increased, silage K, Ca, P, Na, Fe, and Cu concentrations linearly decreased (p < 0.001) and so did vitamins B5 and K1 and α-tocopherol. In vitro rumen dry matter and organic matter degradability, pH, ammonia, total volatile fatty acid, and gas production linearly decreased (p < 0.01), while neutral detergent fiber concentration linearly increased (p < 0.001), with increasing proportion of MS. The in vitro dry matter and organic matter degradability rapidly decreased when the MS percentage was ≥60%. In conclusion, the M40 silage is the most suitable for livestock utilization in local forage production considering the balance of silage pH, nutritional quality, and in vitro ruminal fermentation characteristics.


2016 ◽  
Vol 21 (2) ◽  
pp. 135
Author(s):  
Iwan Herdiawan

<p class="abstrak2">Oil palm estate area in Indonesia is generally located in a sub-optimal land that has great opportunity for the development of forage supply. This study aims were to determine productivity of <em>Indigofera</em> zollingeriana under various canopy level. This research used factorial randomized block design with 3 canopy levels (under 2, 5, and 7 year oil palm canopy) and 2 levels of soil acidity (neutral and acid soil) treatments, where each treatment was repeated 4 times. Parameters observed were production and nutrient content of <em>Indigofera</em> zollingeriana. Research results showed that there was no interaction between the canopy levels and soil acidity on the production of fresh leaves, stems/branches, biomass, and leaves/stem ratio of I. zollingeriana. Production of fresh leaves, stems, biomass, and leaves/branches ratio of <em>I. </em>zollingeriana significantly (P &lt;0.01) decreased along with increase of canopy level. Soil acidity significantly (P &lt;0.05) decreased production of fresh leaves, stems, biomass, and leaves/branches ratio. Level of canopy treatment significantly (P &lt;0.05) increased content of crude protein, crude fiber and energy, otherwise value of in vitro dry matter digestibility (IVDMD) and organic matter digestibilyity (IVOMD) were decrease. Soil acidity significantly (P &lt;0.05) decreased calcium content, in vitro dry matter digestibility (IVDMD) and organic matter digestibility (IVOMD) of <em>I. </em>zollingeriana.</p>


Sign in / Sign up

Export Citation Format

Share Document