scholarly journals The Regulatory Role of Mitochondrial MicroRNAs (MitomiRs) in Breast Cancer: Translational Implications Present and Future

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2443 ◽  
Author(s):  
Miguel A. Ortega ◽  
Oscar Fraile-Martínez ◽  
Luis G. Guijarro ◽  
Carlos Casanova ◽  
Santiago Coca ◽  
...  

Breast cancer is the most prevalent and incident female neoplasm worldwide. Although survival rates have considerably improved, it is still the leading cause of cancer-related mortality in women. MicroRNAs are small non-coding RNA molecules that regulate the posttranscriptional expression of a wide variety of genes. Although it is usually located in the cytoplasm, several studies have detected a regulatory role of microRNAs in other cell compartments such as the nucleus or mitochondrion, known as “mitomiRs”. MitomiRs are essential modulators of mitochondrion tasks and their abnormal expression has been linked to the aetiology of several human diseases related to mitochondrial dysfunction, including breast cancer. This review aims to examine basic knowledge of the role of mitomiRs in breast cancer and discusses their prospects as biomarkers or therapeutic targets.

2019 ◽  
Vol 20 (19) ◽  
pp. 4940 ◽  
Author(s):  
Hui-Yi Loh ◽  
Brendan P. Norman ◽  
Kok-Song Lai ◽  
Nik Mohd Afizan Nik Abd. Rahman ◽  
Noorjahan Banu Mohamed Alitheen ◽  
...  

MicroRNAs (miRNAs) are small non-coding RNA molecules which function as critical post-transcriptional gene regulators of various biological functions. Generally, miRNAs negatively regulate gene expression by binding to their selective messenger RNAs (mRNAs), thereby leading to either mRNA degradation or translational repression, depending on the degree of complementarity with target mRNA sequences. Aberrant expression of these miRNAs has been linked etiologically with various human diseases including breast cancer. Different cellular pathways of breast cancer development such as cell proliferation, apoptotic response, metastasis, cancer recurrence and chemoresistance are regulated by either the oncogenic miRNA (oncomiR) or tumor suppressor miRNA (tsmiR). In this review, we highlight the current state of research into miRNA involved in breast cancer, with particular attention to articles published between the years 2000 to 2019, using detailed searches of the databases PubMed, Google Scholar, and Scopus. The post-transcriptional gene regulatory roles of various dysregulated miRNAs in breast cancer and their potential as therapeutic targets are also discussed.


2020 ◽  
Vol 47 (1) ◽  
pp. 67-72
Author(s):  
T. Popov ◽  
S. Giragosyan ◽  
V. Petkova ◽  
Tz. Marinov ◽  
M. Belitova ◽  
...  

AbstractThe process of neoangiogenesis is one of the classic hallmarks of a cancer. Its intricate mechanisms have long been one of the major domains in cancer research and a hope for a therapeutic breakthrough. Last decade a new subgroup of non-coding RNA molecules was reported called microRNAs. Literally hundreds of new molecules in this class are being uncovered as pivotal regulators in virtually all intracellular processes. The aim of this study is to classify and review those microRNA molecules that have a role in the processes of tumor angiogenesis and map their places in the regulatory framework of the classical proangiogenic genes and their canonical cascades.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1156
Author(s):  
Charlotte Orre ◽  
Xavier Dieu ◽  
Jordan Guillon ◽  
Naïg Gueguen ◽  
Seyedeh Tayebeh Ahmadpour ◽  
...  

Despite improvements in therapeutic strategies for treating breast cancers, tumor relapse and chemoresistance remain major issues in patient outcomes. Indeed, cancer cells display a metabolic plasticity allowing a quick adaptation to the tumoral microenvironment and to cellular stresses induced by chemotherapy. Recently, long non-coding RNA molecules (lncRNAs) have emerged as important regulators of cellular metabolic orientation. In the present study, we addressed the role of the long non-coding RNA molecule (lncRNA) SAMMSON on the metabolic reprogramming and chemoresistance of MCF-7 breast cancer cells resistant to doxorubicin (MCF-7dox). Our results showed an overexpression of SAMMSON in MCF-7dox compared to doxorubicin-sensitive cells (MCF-7). Silencing of SAMMSON expression by siRNA in MCF-7dox cells resulted in a metabolic rewiring with improvement of oxidative metabolism, decreased mitochondrial ROS production, increased mitochondrial replication, transcription and translation and an attenuation of chemoresistance. These results highlight the role of SAMMSON in the metabolic adaptations leading to the development of chemoresistance in breast cancer cells. Thus, targeting SAMMSON expression levels represents a promising therapeutic route to circumvent doxorubicin resistance in breast cancers.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 902
Author(s):  
Eva Costanzi ◽  
Carolina Simioni ◽  
Gabriele Varano ◽  
Cinzia Brenna ◽  
Ilaria Conti ◽  
...  

Extracellular vesicles (EVs) have attracted interest as mediators of intercellular communication following the discovery that EVs contain RNA molecules, including non-coding RNA (ncRNA). Growing evidence for the enrichment of peculiar RNA species in specific EV subtypes has been demonstrated. ncRNAs, transferred from donor cells to recipient cells, confer to EVs the feature to regulate the expression of genes involved in differentiation, proliferation, apoptosis, and other biological processes. These multiple actions require accuracy in the isolation of RNA content from EVs and the methodologies used play a relevant role. In liver, EVs play a crucial role in regulating cell–cell communications and several pathophysiological events in the heterogeneous liver class of cells via horizontal transfer of their cargo. This review aims to discuss the rising role of EVs and their ncRNAs content in regulating specific aspects of hepatocellular carcinoma development, including tumorigenesis, angiogenesis, and tumor metastasis. We analyze the progress in EV-ncRNAs’ potential clinical applications as important diagnostic and prognostic biomarkers for liver conditions.


2020 ◽  
Vol 21 (16) ◽  
pp. 5834
Author(s):  
Anna Maria Grimaldi ◽  
Silvia Nuzzo ◽  
Gerolama Condorelli ◽  
Marco Salvatore ◽  
Mariarosaria Incoronato

There is an unmet need for novel non-invasive prognostic molecular tumour markers for breast cancer (BC). Accumulating evidence shows that miR-155 plays a pivotal role in tumorigenesis. Generally, miR-155 is considered an oncogenic miRNA promoting tumour growth, angiogenesis and aggressiveness of BC. Therefore, many researchers have focused on its use as a prognostic biomarker and therapeutic target. However, its prognostic value for BC patients remains controversial. To address this issue, the present systematic review aims to summarize the available evidence and give a picture of a prognostic significance of miR-155 in BC pathology. All eligible studies were searched on PubMed and EMBASE databases through various search strategies. Starting from 289 potential eligible records, data were examined from 28 studies, comparing tissue and circulating miR-155 expression levels with clinicopathological features and survival rates in BC patients. We discuss the pitfalls and challenges that need to be assessed to understand the power of miR-155 to respond to real clinical needs, highlighting the consistency, robustness or lack of results obtained to sate in translating this molecule to clinical practice. Our paper suggests that the prognostic role of miR-155 in the management of BC needs to be further verified.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4240
Author(s):  
Thomas Meyer ◽  
Michael Sand ◽  
Lutz Schmitz ◽  
Eggert Stockfleth

Keratinocyte carcinomas (KC) include basal cell carcinomas (BCC) and cutaneous squamous cell carcinomas (cSCC) and represents the most common cancer in Europe and North America. Both entities are characterized by a very high mutational burden, mainly UV signature mutations. Predominately mutated genes in BCC belong to the sonic hedgehog pathway, whereas, in cSCC, TP53, CDKN2A, NOTCH1/2 and others are most frequently mutated. In addition, the dysregulation of factors associated with epithelial to mesenchymal transition (EMT) was shown in invasive cSCC. The expression of factors associated with tumorigenesis can be controlled in several ways and include non-coding RNA molecules, such as micro RNAs (miRNA) long noncoding RNAs (lncRNA) and circular RNAs (circRNA). To update findings on circRNA in KC, we reviewed 13 papers published since 2016, identified in a PubMed search. In both BCC and cSCC, numerous circRNAs were identified that were differently expressed compared to healthy skin. Some of them were shown to target miRNAs that are also dysregulated in KC. Moreover, some studies confirmed the biological functions of individual circRNAs involved in cancer development. Thus, circRNAs may be used as biomarkers of disease and disease progression and represent potential targets of new therapeutic approaches for KC.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Chong Lu ◽  
Xiuhua Wang ◽  
Xiangwang Zhao ◽  
Yue Xin ◽  
Chunping Liu

Abstract Breast cancer (BC) poses a great threaten to women health. Numerous evidences suggest the important role of long non-coding RNAs (lncRNAs) in BC development. In the present study, we intended to investigate the role of ARAP1-AS1 in BC progression. First of all, the GEPIA data suggested that ARAP1-AS1 was highly expressed in breast invasive carcinoma (BRAC) tissues compared with the normal breast tissues. Meanwhile, the expression of ARAP1-AS1 was greatly up-regulated in BC cell lines. ARAP1-AS1 knockdown led to repressed proliferation, strengthened apoptosis and blocked migration of BC cells. Moreover, ARAP1-AS1 could boost HDAC2 expression in BC through sponging miR-2110 via a ceRNA mechanism. Of note, the UCSC predicted that HDAC2 was a potential transcriptional regulator of PLIN1, an identified tumor suppressor in BC progression. Moreover, we explained that the repression of HDAC2 on PLIN1 was owing to its deacetylation on PLIN1 promoter. More importantly, depletion of PLIN1 attenuated the mitigation function of ARAP1-AS1 silence on the malignant phenotypes of BC cells. To sum up, ARAP1-AS1 serves a tumor-promoter in BC development through modulating miR-2110/HDAC2/PLIN1 axis, which may help to develop novel effective targets for BC treatment.


2021 ◽  
Vol 27 ◽  
Author(s):  
Bei Wang ◽  
Wen Xu ◽  
Yuxuan Cai ◽  
Kai Liu ◽  
Jiacheng Wu ◽  
...  

Background: Long non-coding RNA (lncRNA) breast cancer anti-estrogen resistance 4 (BCAR4) is a characterized oncogenic lncRNA in different cancers. This review is dedicated to summarize various molecular mechanisms of BCAR4 and demonstrate that the biological functions exerted by BCAR4 are good entry points for therapy. Methods: The molecular mechanism of BCAR4 acting on tumors is summarized by reviewing PubMed. Results: The expression of lncRNA BCAR4 is abnormally increased in all kinds of tumors, including colorectal cancer, prostate cancer, bladder cancer, gastric cancer, chondrosarcoma, glioma, breast cancer, glioma, gastric cancer, liver cancer, cervical cancer, lung cancer, etc. Besides, BCAR4 mediates multiple processes involved in carcinogenesis, including proliferation, invasion, anti-apoptosis, migration. Conclusion: BCAR4 may show great clinical value in this direction as a therapeutic cancer target.


2019 ◽  
Vol 40 (8) ◽  
pp. 956-964 ◽  
Author(s):  
Chao Yang ◽  
Lin Wang ◽  
Jia Sun ◽  
Jun-hu Zhou ◽  
Yan-li Tan ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) have been reported to play important roles in glioma; however, most of them promote glioma progression. We constructed a competing endogenous (ceRNA) network based on the Chinese Glioma Genome Atlas dataset, and lncRNA hect domain and RLD 2 pseudogene 2 (HERC2P2) is the core of this network. Highly connected genes in the ceRNA network classified the glioma patients into three clusters with significantly different survival rates. The expression of HERC2P2 is positively correlated with survival and negatively correlated with clinical grade. Cell colony formation, Transwell and cell scratch tests were performed to evaluate the role of HERC2P2 in glioblastoma growth. Furthermore, we overexpressed HERC2P2 in U87 cells and established a mouse intracranial glioma model to examine the function of HERC2P2 in vivo. In conclusion, we identified a lncRNA with tumor suppressor functions in glioma that could be a potential biomarker for glioma patients.


Sign in / Sign up

Export Citation Format

Share Document