scholarly journals Production of Ethylene Glycol from Glycerol Using an In Vitro Enzymatic Cascade

Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 214
Author(s):  
Kai Li ◽  
Weikang Sun ◽  
Wensi Meng ◽  
Jinxin Yan ◽  
Yipeng Zhang ◽  
...  

Glycerol is a readily available and inexpensive substance that is mostly generated during biofuel production processes. In order to ensure the viability of the biofuel industry, it is essential to develop complementing technologies for the resource utilization of glycerol. Ethylene glycol is a two-carbon organic chemical with multiple applications and a huge market. In this study, an artificial enzymatic cascade comprised alditol oxidase, catalase, glyoxylate/hydroxypyruvate reductase, pyruvate decarboxylase and lactaldehyde:propanediol oxidoreductase was developed for the production of ethylene glycol from glycerol. The reduced nicotinamide adenine dinucleotide (NADH) generated during the dehydrogenation of the glycerol oxidation product d-glycerate can be as the reductant to support the ethylene glycol production. Using this in vitro synthetic system with self-sufficient NADH recycling, 7.64 ± 0.15 mM ethylene glycol was produced from 10 mM glycerol in 10 h, with a high yield of 0.515 ± 0.1 g/g. The in vitro enzymatic cascade is not only a promising alternative for the generation of ethylene glycol but also a successful example of the value-added utilization of glycerol.

2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Jyothi R ◽  
Srinivasa Murthy K M ◽  
Hossein . ◽  
Veena .

Colocasia esculenta is commonly known as Taro, it is referred to as cocoyam in Nigeria. They are cherished for their rich taste, nutritional and medicinal properties. Every 100 g of taro corms possess 112 Kcal, 26.46 g carbohydrate, 1.50 g protein, 0.20 g total fat and 4.1g fiber (USDA National Nutrient Data Base). Besides its nutritional value, taro is used as a medical plant and provides bioactive compounds used as an anti-cancer drugs. Traditionally, cocoyams are vegetative propagated from tuber fragments, a practice that encourages pathogen distribution. Colocasia esculenta is a widely distributed food crop in the humid tropics and subtropics. Despite of its wide distribution, Taro plants are commonly infected with DsMV and other pathogens. This virus induces conspicuous mosaic, malformation, dwarfing or feathering on leaves in taro. As the results of infection, it reduces the quality and yield of taro production greatly. This virus is thus considered as a major limiting factor in the production of taro. Here plays the importance of  tissue culture plays a major role in producing the disease resistant plants round the year with high quality. For rapid multiplication and production of quality planting materials, tissue culture technology offers promising alternative compared to the traditional production methods. KEYWORDS: Colocasia esculenta, Virus, Pathogens, Conventional propagation, Micropropagation, Yield, Rapid multiplication, Quality


Author(s):  
Ashwin Kumar Tulasi ◽  
Anil Goud Kandhula ◽  
Ravi Krishna Velupula

Topiramate is a second-generation antiepileptic drug used in partial, generalized seizures as an oral tablet. Oral route of administration is most convenient but shows delayed absorption. Moreover, in emergency cases, parenteral administration is not possible as it requires medical assistance. Hence, the present study was aimed to develop topiramate mucoadhesive nanoparticles for intranasal administration using ionotropic gelation method. The developed nanoparticles were evaluated for physico-chemical properties like particle size, zeta potential, surface morphology, drug content, entrapment efficiency, in vitro drug release, mucoadhesive strength, and ex vivo permeation studies in excised porcine nasal mucosa. Optimized nanoparticle formulation (T9) was composed oil mucoadhesive agent (Chitosan 1% w/w), cross linking polymer (TPP) and topiramate 275mg, 100mg and 4% respectively. It showed particle size of 350nm, high encapsulation efficacy and strong mucoadhesive strength. In vitro drug diffusion of optimized formulation showed 95.12% release of drug after 180min. Ex-vivo permeation of drug across nasal mucosa was   88.05 % after 180min. Nasocilial toxicity studies showed optimized formulation did not damage the nasal mucosa. Thus, the intranasal administration of topiramate using chitosan can be a promising alternative for brain targeting and the treatment of epilepsy.


2019 ◽  
Vol 19 (2) ◽  
pp. 265-275 ◽  
Author(s):  
Faeze Khalili ◽  
Sara Akrami ◽  
Malihe Safavi ◽  
Maryam Mohammadi-Khanaposhtani ◽  
Mina Saeedi ◽  
...  

Background: This paper reports synthesis, cytotoxic activity, and apoptosis inducing effect of a novel series of styrylimidazo[1,2-a]pyridine derivatives. Objective: In this study, anti-cancer activity of novel styrylimidazo[1,2-a]pyridines was evaluated. Methods: Styrylimidazo[1,2-a]pyridine derivatives 4a-o were synthesized through a one-pot three-component reaction of 2-aminopyridines, cinnamaldehydes, and isocyanides in high yield. All synthesized compounds 4a-o were evaluated against breast cancer cell lines including MDA-MB-231, MCF-7, and T-47D using MTT assay. Apoptosis was evaluated by acridine orange/ethidium bromide staining, cell cycle analysis, and TUNEL assay as the mechanism of cell death. Results: Most of the synthesized compounds exhibited more potent cytotoxicity than standard drug, etoposide. Induction of apoptosis by the most cytotoxic compounds 4f, 4g, 4j, 4n, and 4m was confirmed through mentioned methods. Conclusion: In conclusion, these results confirmed the potency of styrylimidazo[1,2-a]pyridines for further drug discovery developments in the field of anti-cancer agents.


2020 ◽  
Vol 12 ◽  
Author(s):  
Sagar R. Pardeshi ◽  
Harshal A. Mistari ◽  
Rakhi S. Jain ◽  
Pankaj R. Pardeshi ◽  
Rahul L. Rajput ◽  
...  

Background: Moxifloxacin is a BCS class I drug used in the treatment of bacterial conjunctivitis and keratitis. Despite its high water solubility, it possesses limited bioavailability due to anatomical and physiological constraints associated with the eyes which required multiple administrations to achieve a therapeutic effect. Objective: In order to prolong drug release and to improve antibacterial efficacy for the treatment of bacterial keratitis and conjunctivitis, moxifloxacin loaded nanoemulsion was developed. Methods: The concentration of oil (oleic acid), surfactant (tween 80), and cosurfactant (propylene glycol) were optimized by employing a 3-level 2-factorial design of experiment for the development of nanoemulsion. The developed nanoemulsion was characterized by particle size distribution, viscosity, refractive index, pH, drug content and release, transmission electron microscopy (TEM), and antibacterial study. The compatibility of the drug with the excipients was accessed by Fourier transform infrared spectroscopy (FTIR). Result: The average globule size was found to be 198.20 nm. The TEM study reveals the globules were nearly spherical and are well distributed. In vitro drug release profile for nanoemulsion shown sustained drug release (60.12% at the end of 6 h) compared to drug solution, where complete drug released within 2 h. The antibacterial effectiveness of the drug-loaded nanoemulsion was improved against S. aureus compared with the marketed formulation. Conclusion: The formulated sustained release nanoemulsion could be a promising alternative to eye drop with improved patient compliance by minimizing dosing frequency with improved antibacterial activity.


2015 ◽  
Vol 1718 ◽  
pp. 97-102 ◽  
Author(s):  
Toralf Roch ◽  
Konstanze K. Julich-Gruner ◽  
Axel T. Neffe ◽  
Nan Ma ◽  
Andreas Lendlein

ABSTRACTPolymer-based therapeutic strategies require biomaterials with properties and functions tailored to the demands of specific applications leading to an increasing number of newly designed polymers. For the evaluation of those new materials, comprehensive biocompatibility studies including cyto-, tissue-, and immunocompatibility are essential. Recently, it could be demonstrated that star-shaped amino oligo(ethylene glycol)s (sOEG) with a number average molecular weight of 5 kDa and functionalized with the phenol-derived moieties desaminotyrosine (DAT) or desaminotyrosyl tyrosine (DATT) behave in aqueous solution like surfactants without inducing a substantial cytotoxicity, which may qualify them as solubilizer for hydrophobic drugs in aqueous solution. However, for biomedical applications the polymer solutions need to be free of immunogenic contaminations, which could result from inadequate laboratory environment or contaminated starting material. Furthermore, the materials should not induce uncontrolled or undesired immunological effects arising from material intrinsic properties. Therefore, a comprehensive immunological evaluation as perquisite for application of each biomaterial batch is required. This study investigated the immunological properties of sOEG-DAT(T) solutions, which were prepared using sOEG with number average molecular weights of 5 kDa, 10 kDa, and 20 kDa allowing analyzing the influence of the sOEG chain lengths on innate immune mechanisms. A macrophage-based assay was used to first demonstrate that all DAT(T)-sOEG solutions are free of endotoxins and other microbial contaminations such as fungal products. In the next step, the capacity of the different DAT(T)-functionalized sOEG solutions to induce cytokine secretion and generation of reactive oxygen species (ROS) was investigated using whole human blood. It was observed that low levels of the pro-inflammatory cytokines interleukin(IL)-1β and IL-6 were detected for all sOEG solutions but only when used at concentrations above 250 µg·mL-1. Furthermore, only the 20 kDa sOEG-DAT induced low amounts of ROS-producing monocytes. Conclusively, the data indicate that the materials were not contaminated with microbial products and do not induce substantial immunological adverse effectsin vitro,which is a prerequisite for future biological applications.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 918
Author(s):  
Nóra Emilia Nagybákay ◽  
Michail Syrpas ◽  
Vaiva Vilimaitė ◽  
Laura Tamkutė ◽  
Audrius Pukalskas ◽  
...  

The article presents the optimization of supercritical CO2 extraction (SFE-CO2) parameters using response surface methodology (RSM) with central composite design (CCD) in order to produce single variety hop (cv. Ella) extracts with high yield and strong in vitro antioxidant properties. Optimized SFE-CO2 (37 MPa, 43 °C, 80 min) yielded 26.3 g/100 g pellets of lipophilic fraction. This extract was rich in biologically active α- and β-bitter acids (522.8 and 345.0 mg/g extract, respectively), and exerted 1481 mg TE/g extract in vitro oxygen radical absorbance capacity (ORAC). Up to ~3-fold higher extraction yield, antioxidant recovery (389.8 mg TE/g pellets) and exhaustive bitter acid extraction (228.4 mg/g pellets) were achieved under the significantly shorter time compared to the commercially used one-stage SFE-CO2 at 10–15 MPa and 40 °C. Total carotenoid and chlorophyll content was negligible, amounting to <0.04% of the total extract mass. Fruity, herbal, spicy and woody odor of extracts could be attributed to the major identified volatiles, namely β-pinene, β-myrcene, β-humulene, α-humulene, α-selinene and methyl-4-decenoate. Rich in valuable bioactive constituents and flavor compounds, cv. Ella hop SFE-CO2 extracts could find multipurpose applications in food, pharmaceutical, nutraceutical and cosmetics industries.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 245
Author(s):  
María de la Luz Cádiz-Gurrea ◽  
Diana Pinto ◽  
Cristina Delerue-Matos ◽  
Francisca Rodrigues

Olea europaea cultivar, native in the Mediterranean basin, has expanded worldwide, mainly due to the olive oil industry. This expansion is attributed to the benefits of olive oil consumption, since this product is rich in nutritional and bioactive compounds. However, the olive industry generates high amounts of wastes, which could be related to polluting effects on soil and water. To minimize the environmental impact, different strategies of revalorization have been proposed. In this sense, the aim of this work was to develop high cosmetic value added oleuropein-enriched extracts (O20 and O30), a bioactive compound from olive byproducts, performing a comprehensive characterization using high performance liquid chromatography coupled to mass spectrometry and evaluate their bioactivity by in vitro assays. A total of 49 compounds were detected, with oleuropein and its derivatives widely found in O30 extract, whereas iridoids were mainly detected in O20 extract. Moreover, 10 compounds were detected for the first time in olive leaves. Both extracts demonstrated strong antioxidant and antiradical activities, although O30 showed higher values. In addition, radical oxygen and nitrogen species scavenging and enzyme inhibition values were higher in O30, with the exception of HOCl and hyaluronidase inhibition assays. Regarding cell viability, olive byproduct extracts did not lead to a decrease in keratinocytes viability until 100 µg/mL. All data reported by the present study reflect the potential of industrial byproducts as cosmetic ingredients.


2021 ◽  
Vol 22 (3) ◽  
pp. 1124
Author(s):  
Mafalda Giovanna Reccia ◽  
Floriana Volpicelli ◽  
Eirkiur Benedikz ◽  
Åsa Fex Svenningsen ◽  
Luca Colucci-D’Amato

Neural stem cells represent a powerful tool to study molecules involved in pathophysiology of Nervous System and to discover new drugs. Although they can be cultured and expanded in vitro as a primary culture, their use is hampered by their heterogeneity and by the cost and time needed for their preparation. Here we report that mes-c-myc A1 cells (A1), a neural cell line, is endowed with staminal properties. Undifferentiated/proliferating and differentiated/non-proliferating A1 cells are able to generate neurospheres (Ns) in which gene expression parallels the original differentiation status. In fact, Ns derived from undifferentiated A1 cells express higher levels of Nestin, Kruppel-like factor 4 (Klf4) and glial fibrillary protein (GFAP), markers of stemness, while those obtained from differentiated A1 cells show higher levels of the neuronal marker beta III tubulin. Interestingly, Ns differentiation, by Epidermal Growth Factors (EGF) and Fibroblast Growth Factor 2 (bFGF) withdrawal, generates oligodendrocytes at high-yield as shown by the expression of markers, Galactosylceramidase (Gal-C) Neuron-Glial antigen 2 (NG2), Receptor-Interacting Protein (RIP) and Myelin Basic Protein (MBP). Finally, upon co-culture, Ns-A1-derived oligodendrocytes cause a redistribution of contactin-associated protein (Caspr/paranodin) protein on neuronal cells, as primary oligodendrocytes cultures, suggesting that they are able to form compact myelin. Thus, Ns-A1-derived oligodendrocytes may represent a time-saving and low-cost tool to study the pathophysiology of oligodendrocytes and to test new drugs.


2021 ◽  
Vol 7 (7) ◽  
pp. 500
Author(s):  
Anne Caroline Morais Caldeirão ◽  
Heitor Ceolin Araujo ◽  
Laís Salomão Arias ◽  
Wilmer Ramírez Carmona ◽  
Gustavo Porangaba Miranda ◽  
...  

The contribution of different Candida species in oral fungal infections has stimulated the search for more effective therapies. This study assessed the antibiofilm effects of nanocarriers of miconazole (MCZ) or fluconazole (FLZ) on Candida biofilms, and their cytotoxic effects on murine fibroblasts. Three-species biofilms (Candida albicans/Candida glabrata/Candida tropicalis) were formed on 96-well plates, and they were treated with nanocarriers (iron oxide nanoparticles coated with chitosan—“IONPs-CS”) of MCZ or FLZ at 39/78/156 µg/mL; antifungals alone at 156 µg/mL and artificial saliva were tested as positive and negative controls, respectively. Biofilms were analyzed by colony forming units (CFU), biomass, metabolic activity, and structure/viability. The cytotoxicity (L929 cells) of all treatments was determined via 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) reduction assay. Data were submitted to one- or two-way ANOVA, followed by Tukey’s or Fisher LSD’s tests (p < 0.05). IONPs-CS-MCZ at 78 µg/mL promoted similar antibiofilm and cytotoxic effects compared with MCZ at 156 µg/mL. In turn, IONPs-CS-FLZ at 156 µg/mL was overall the most effective FLZ antibiofilm treatment, surpassing the effects of FLZ alone; this nanocarrier was also less cytotoxic compared with FLZ alone. It can be concluded that both nanocarriers are more effective alternatives to fight Candida biofilms compared with their respective positive controls in vitro, being a promising alternative for the treatment of oral fungal infections.


Sign in / Sign up

Export Citation Format

Share Document