scholarly journals The Interactome between Metabolism and Gene Mutations in Myeloid Malignancies

2021 ◽  
Vol 22 (6) ◽  
pp. 3135
Author(s):  
Carmelo Gurnari ◽  
Simona Pagliuca ◽  
Valeria Visconte

The study of metabolic deregulation in myeloid malignancies has led to the investigation of metabolic-targeted therapies considering that cells undergoing leukemic transformation have excessive energy demands for growth and proliferation. However, the most difficult challenge in agents targeting metabolism is to determine a window of therapeutic opportunities between normal and neoplastic cells, considering that all or most of the metabolic pathways important for cancer ontogeny may also regulate physiological cell functions. Targeted therapies have used the properties of leukemic cells to produce altered metabolic products when mutated. This is the case of IDH1/2 mutations generating the abnormal conversion of α-ketoglutarate (KG) to 2-hydroxyglutarate, an oncometabolite inhibiting KG-dependent enzymes, such as the TET family of genes (pivotal in characterizing leukemia cells either by mutations, e.g., TET2, or by altered expression, e.g., TET1/2/3). Additional observations derive from the high sensitivity of leukemic cells to oxidative phosphorylation and its amelioration using BCL-2 inhibitors (Venetoclax) or by disrupting the mitochondrial respiration. More recently, nicotinamide metabolism has been described to mediate resistance to Venetoclax in patients with acute myeloid leukemia. Herein, we will provide an overview of the latest research on the link between metabolic pathways interactome and leukemogenesis with a comprehensive analysis of the metabolic consequences of driver genetic lesions and exemplificative druggable pathways.

2020 ◽  
Vol 15 (6) ◽  
pp. 531-546 ◽  
Author(s):  
Hwa-Yong Lee ◽  
In-Sun Hong

Recent studies on the mechanisms that link metabolic changes with stem cell fate have deepened our understanding of how specific metabolic pathways can regulate various stem cell functions during the development of an organism. Although it was originally thought to be merely a consequence of the specific cell state, metabolism is currently known to play a critical role in regulating the self-renewal capacity, differentiation potential, and quiescence of stem cells. Many studies in recent years have revealed that metabolic pathways regulate various stem cell behaviors (e.g., selfrenewal, migration, and differentiation) by modulating energy production through glycolysis or oxidative phosphorylation and by regulating the generation of metabolites, which can modulate multiple signaling pathways. Therefore, a more comprehensive understanding of stem cell metabolism could allow us to establish optimal culture conditions and differentiation methods that would increase stem cell expansion and function for cell-based therapies. However, little is known about how metabolic pathways regulate various stem cell functions. In this context, we review the current advances in metabolic research that have revealed functional roles for mitochondrial oxidative phosphorylation, anaerobic glycolysis, and oxidative stress during the self-renewal, differentiation and aging of various adult stem cell types. These approaches could provide novel strategies for the development of metabolic or pharmacological therapies to promote the regenerative potential of stem cells and subsequently promote their therapeutic utility.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 225
Author(s):  
Claire Racaud-Sultan ◽  
Nathalie Vergnolle

In adult stem cells, Glycogen Synthase Kinase 3β (GSK3β) is at the crossroad of signaling pathways controlling survival, proliferation, adhesion and differentiation. The microenvironment plays a key role in the regulation of these cell functions and we have demonstrated that the GSK3β activity is strongly dependent on the engagement of integrins and protease-activated receptors (PARs). Downstream of the integrin α5β1 or PAR2 activation, a molecular complex is organized around the scaffolding proteins RACK1 and β-arrestin-2 respectively, containing the phosphatase PP2A responsible for GSK3β activation. As a consequence, a quiescent stem cell phenotype is established with high capacities to face apoptotic and metabolic stresses. A protective role of GSK3β has been found for hematopoietic and intestinal stem cells. Latters survived to de-adhesion through PAR2 activation, whereas formers were protected from cytotoxicity through α5β1 engagement. However, a prolonged activation of GSK3β promoted a defect in epithelial regeneration and a resistance to chemotherapy of leukemic cells, paving the way to chronic inflammatory diseases and to cancer resurgence, respectively. In both cases, a sexual dimorphism was measured in GSK3β-dependent cellular functions. GSK3β activity is a key marker for inflammatory and cancer diseases allowing adjusted therapy to sex, age and metabolic status of patients.


2021 ◽  
Vol 22 (9) ◽  
pp. 4955
Author(s):  
Guadalupe Rosario Fajardo-Orduña ◽  
Edgar Ledesma-Martínez ◽  
Itzen Aguiñiga-Sánchez ◽  
María de Lourdes Mora-García ◽  
Benny Weiss-Steider ◽  
...  

Acute myeloid leukemia (AML), the most common type of leukemia in older adults, is a heterogeneous disease that originates from the clonal expansion of undifferentiated hematopoietic progenitor cells. These cells present a remarkable variety of genes and proteins with altered expression and function. Despite significant advances in understanding the molecular panorama of AML and the development of therapies that target mutations, survival has not improved significantly, and the therapy standard is still based on highly toxic chemotherapy, which includes cytarabine (Ara-C) and allogeneic hematopoietic cell transplantation. Approximately 60% of AML patients respond favorably to these treatments and go into complete remission; however, most eventually relapse, develop refractory disease or chemoresistance, and do not survive for more than five years. Therefore, drug resistance that initially occurs in leukemic cells (primary resistance) or that develops during or after treatment (acquired resistance) has become the main obstacle to AML treatment. In this work, the main molecules responsible for generating chemoresistance to Ara-C in AML are discussed, as well as some of the newer strategies to overcome it, such as the inclusion of molecules that can induce synergistic cytotoxicity with Ara-C (MNKI-8e, emodin, metformin and niclosamide), subtoxic concentrations of chemotherapy (PD0332991), and potently antineoplastic treatments that do not damage nonmalignant cells (heteronemin or hydroxyurea + azidothymidine).


2021 ◽  
Vol 10 (13) ◽  
pp. 2788
Author(s):  
Suncica Kapor ◽  
Juan F. Santibanez

Myeloid malignancies arise from an altered hematopoietic stem cell and mainly comprise acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic leukemic cells may influence the growth and differentiation of other hematopoietic cell lineages in peripheral blood and bone marrow. Myeloid-derived suppressor cells (MDSCs) and mesenchymal stromal cells (MSCs) display immunoregulatory properties by controlling the innate and adaptive immune systems that may induce a tolerant and supportive microenvironment for neoplasm development. This review analyzes the main features of MDSCs and MSCs in myeloid malignancies. The number of MDSCs is elevated in myeloid malignancies exhibiting high immunosuppressive capacities, whereas MSCs, in addition to their immunosuppression contribution, regulate myeloid leukemia cell proliferation, apoptosis, and chemotherapy resistance. Moreover, MSCs may promote MDSC expansion, which may mutually contribute to the creation of an immuno-tolerant neoplasm microenvironment. Understanding the implication of MDSCs and MSCs in myeloid malignancies may favor their potential use in immunotherapeutic strategies.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 445
Author(s):  
Daniela Zizioli ◽  
Simona Bernardi ◽  
Marco Varinelli ◽  
Mirko Farina ◽  
Luca Mignani ◽  
...  

Zebrafish has proven to be a versatile and reliable experimental in vivo tool to study human hematopoiesis and model hematological malignancies. Transgenic technologies enable the generation of specific leukemia types by the expression of human oncogenes under specific promoters. Using this technology, a variety of myeloid and lymphoid malignancies zebrafish models have been described. Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia characterized by the BCR-ABL1 fusion gene, derived from the t (9;22) translocation causing the Philadelphia Chromosome (Ph). The BCR-ABL1 protein is a constitutively activated tyrosine kinas inducing the leukemogenesis and resulting in an accumulation of immature leukemic cells into bone marrow and peripheral blood. To model Ph+ CML, a transgenic zebrafish line expressing the human BCR-ABL1 was generated by the Gal4/UAS system, and then crossed with the hsp70-Gal4 transgenic line. The new line named (BCR-ABL1pUAS:CFP/hsp70-Gal4), presented altered expression of hematopoietic markers during embryonic development compared to controls and transgenic larvae showed proliferating hematopoietic cells in the caudal hematopoietic tissue (CHT). The present transgenic zebrafish would be a robust CML model and a high-throughput drug screening tool.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1414-1414
Author(s):  
Fernando Carazo ◽  
Edurne San Jose ◽  
Leire Garate ◽  
Estibaliz Miranda ◽  
Ana Alfonso Pierola ◽  
...  

Acute myeloid leukemia (AML) is a hematologic neoplasm characterized by a remarkable phenotypic and genomic heterogeneity. The recent characterization of genomic subtypes of AML based on large sequencing studies has provided the rationale for the development of targeted therapies based on the presence of specific genomic abnormalities. However, long term survival particularly in older patients remains a unmet medicalneed. Additionally, recent studies using RNA interference (RNAi) libraries have determined the existence of genes that are essential for the survival of multiple cancer cells. Understanding the effect of genomic alterations (mutations, deletions, translocations) on gene essentiality could favor the development of targeted therapies for specific subgroups of AML patients. However, current statistical methods such as the Benjamini-Hochberg (BH) procedure have shown limitations for controlling the false discovery rate (FDR) and have suboptimal sensitivity (recall of true positives) because the P-value correction does not include any prior information of individual tests. For this reason, in this study we developed a new large-scale statistical algorithm, which combine the RNAi libraries (more than 17.000 genes) data with mutational profiles, to identify gene essentialities associated with specific genomic mutations in order to explore this approach in AML. We adapted the Independent Hypothesis Weighting (IHW) procedure to the problem of identifying mutations as surrogate markers of gene essentiality, by using the gene mutation state in each cell line as prior information of a IHW problem. This approach was tested in 19 tumor subtypes, of the Cancer Cell Line Encyclopedia (CCLE) showing that it recalls new discoveries that cannot be identified with standard procedures in 17 out of 19 tumors, including the identification of up to 1,000 discoveries in tumor types in which BH recalls no discovery. These results demonstrated the accuracy of the IHW-based approach to identify gene mutations as surrogate markers of gene essentiality in the future. Once validated, we applied this computational model to the15 AMLcell lines of CCLE. The number of discoveries with an FDR of 20% increases from 2 (using the traditional BH correction), to 38 using our procedure, showing NRAS as the top mutation biomarker in the ranking. Interestingly, the algorithm identified one essential gene (NRAS) for NRAS mutated (NRAS-mut) and another essential gene (PTPN11) for NRAS wild type (NRAS-wt) AML cells, covering all samples of AMLs. To validate this hypothesis, we examined the effect of two different specific siRNAs for each gene (siPTPN11 and siNRAS) on cell proliferation of four AML cell lines: two lines with NRAS-mut (HL-60 and OCIAML3) and two with NRAS-wt (MV4-11 and HEL). Downregulation of NRAS expression significantly decreases the cell proliferation only in the 2 NRAS-mutated AML cell lines. Whereas the inhibition of PTPN11expression produced an equivalent effect, but specifically in the 2 NRAS-wt AML cell lines (Figure 1). These results confirmed our predictions and showed the essential role of NRAS or PTNPN11 in AML cell lines either with NRAS mutated or wild type, respectively. These results demonstrate that the application of our algorithm in the context of specific gene mutation not only may allow identification of directed therapies based on the mutation but can also define new gene essentialities amenable for targeted therapies providing new therapeutic strategies in patients with AML and potentially in other tumors. Disclosures Paiva: Amgen, Bristol-Myers Squibb, Celgene, Janssen, Merck, Novartis, Roche and Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene, Janssen, Sanofi and Takeda: Consultancy. San-Miguel:Amgen, Bristol-Myers Squibb, Celgene, Janssen, MSD, Novartis, Roche, Sanofi, and Takeda: Consultancy, Honoraria.


Blood ◽  
1994 ◽  
Vol 84 (4) ◽  
pp. 1182-1192 ◽  
Author(s):  
F Mentz ◽  
F Ouaaz ◽  
A Michel ◽  
C Blanc ◽  
P Herve ◽  
...  

Abstract In this study, we have investigated the ability of various cytokines to induce the maturation of acute lymphoblastic leukemia (T-ALL) cells with early T-cell phenotype. Leukemic blasts from 17 untreated T-ALL patients were assayed for their ability to acquire mature T-cell markers, CD3/T-cell receptor (TCR) in particular, after incubation with one or a combination of recombinant human interleukin-1 (IL-1), IL-2, IL-4, IL-7, and CD2-specific monoclonal antibody (MoAb). IL-7 or IL-2 induced the proliferation of some leukemic cells, whereas sequential cell treatment with CD2-MoAb and then IL-2 promoted CD3/TCR expression on nearly all CD2+ cells (15 of 16), except for 1 T-ALL that developed into CD3-CD16+CD56+ cells. Differentiation of T-ALL cells was also evidenced through the downregulation of CD34 precursor cell antigen, the generation of CD4+ and CD8+ cells from CD4+ CD8+ precursors, and the acquisition of mature T-cell functions. CD2 ligation induced a progressive increase of surface expression of IL-2 receptor alpha (IL- 2R alpha) and IL-2R beta and an accelerated in vitro death of leukemic cells. The ligation of IL-2R by IL-2 rescued T-ALL cells from death and promoted their progression toward more mature cells expressing extracellular CD3/TCR alpha beta complexes. Intracellular analysis indicates that TCR alpha transcription and membrane translocation of both TCR alpha and TCR beta were promoted in these conditions. Analysis of intracellular signals transduced during T-ALL differentiation indicated that CD2-ligation induced Ca2+ influx and that the ligation of CD2 and IL-2R induced distinct tyrosine phosphorylation patterns. The addition of inhibitors of tyrosine phosphorylation abolished T-ALL cell differentiation, which suggests the involvement of tyrosine kinases in this phenomenon. Together, we showed the constant maturation of leukemic early T cells after stimulation of surface CD2 and the high- affinity IL-2R.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1639 ◽  
Author(s):  
Jenny Rinke ◽  
Andrew Chase ◽  
Nicholas C. P. Cross ◽  
Andreas Hochhaus ◽  
Thomas Ernst

Our understanding of the significance of epigenetic dysregulation in the pathogenesis of myeloid malignancies has greatly advanced in the past decade. Enhancer of Zeste Homolog 2 (EZH2) is the catalytic core component of the Polycomb Repressive Complex 2 (PRC2), which is responsible for gene silencing through trimethylation of H3K27. EZH2 dysregulation is highly tumorigenic and has been observed in various cancers, with EZH2 acting as an oncogene or a tumor-suppressor depending on cellular context. While loss-of-function mutations of EZH2 frequently affect patients with myelodysplastic/myeloproliferative neoplasms, myelodysplastic syndrome and myelofibrosis, cases of chronic myeloid leukemia (CML) seem to be largely characterized by EZH2 overexpression. A variety of other factors frequently aberrant in myeloid leukemia can affect PRC2 function and disease pathogenesis, including Additional Sex Combs Like 1 (ASXL1) and splicing gene mutations. As the genetic background of myeloid malignancies is largely heterogeneous, it is not surprising that EZH2 mutations act in conjunction with other aberrations. Since EZH2 mutations are considered to be early events in disease pathogenesis, they are of therapeutic interest to researchers, though targeting of EZH2 loss-of-function does present unique challenges. Preliminary research indicates that combined tyrosine kinase inhibitor (TKI) and EZH2 inhibitor therapy may provide a strategy to eliminate the residual disease burden in CML to allow patients to remain in treatment-free remission.


Author(s):  
Zhongping Yin ◽  
Ling Bai ◽  
Wei Li ◽  
Tanlun Zeng ◽  
Huimin Tian ◽  
...  

Abstract T cells play important roles in anti-tumor immunity. Emerging evidence has revealed that distinct metabolic changes impact the activation and differentiation of T cells. Tailoring immune responses by manipulating cellular metabolic pathways and the identification of new targets may provide new options for cancer immunotherapy. In this review, we focus on recent advances in the metabolic reprogramming of different subtypes of T cells and T cell functions. We summarize how metabolic pathways accurately regulate T cell development, differentiation, and function in the tumor microenvironment. Because of the similar metabolism in activated T cells and tumor cells, we also describe the effect of the tumor microenvironment on T cell metabolism reprogramming, which may provide strategies for maximal anti-cancer effects and enhancing the immunity of T cells. Thus, studies of T lymphocyte metabolism can not only facilitate the basic research of immune metabolism, but also provide potential targets for drug development and new strategies for clinical treatment of cancer.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 753 ◽  
Author(s):  
Loris Zamai ◽  
Genny Del Zotto ◽  
Flavia Buccella ◽  
Sara Gabrielli ◽  
Barbara Canonico ◽  
...  

The NK cell population is characterized by distinct NK cell subsets that respond differently to the various activating stimuli. For this reason, the determination of the optimal cytotoxic activation of the different NK cell subsets can be a crucial aspect to be exploited to counter cancer cells in oncologic patients. To evaluate how the triggering of different combination of activating receptors can affect the cytotoxic responses of different NK cell subsets, we developed a microbead-based degranulation assay. By using this new assay, we were able to detect CD107a+ degranulating NK cells even within the less cytotoxic subsets (i.e., resting CD56bright and unlicensed CD56dim NK cells), thus demonstrating its high sensitivity. Interestingly, signals delivered by the co-engagement of NKp46 with 2B4, but not with CD2 or DNAM-1, strongly cooperate to enhance degranulation on both licensed and unlicensed CD56dim NK cells. Of note, 2B4 is known to bind CD48 hematopoietic antigen, therefore this observation may provide the rationale why CD56dim subset expansion correlates with successful hematopoietic stem cell transplantation mediated by alloreactive NK cells against host T, DC and leukemic cells, while sparing host non-hematopoietic tissues and graft versus host disease. The assay further confirms that activation of LFA-1 on NK cells leads to their granule polarization, even if, in some cases, this also takes to an inhibition of NK cell degranulation, suggesting that LFA-1 engagement by ICAMs on target cells may differently affect NK cell response. Finally, we observed that NK cells undergo a time-dependent spontaneous (cytokine-independent) activation after blood withdrawal, an aspect that may strongly bias the evaluation of the resting NK cell response. Altogether our data may pave the way to develop new NK cell activation and expansion strategies that target the highly cytotoxic CD56dim NK cells and can be feasible and useful for cancer and viral infection treatment.


Sign in / Sign up

Export Citation Format

Share Document