scholarly journals Bee Venom, Honey, and Royal Jelly in the Treatment of Bacterial Infections of the Oral Cavity: A Review

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1311
Author(s):  
Michał Otręba ◽  
Łukasz Marek ◽  
Natalia Tyczyńska ◽  
Jerzy Stojko ◽  
Anna Rzepecka-Stojko

Oral diseases affect a very large number of people, and the applied pharmacological methods of treatment and/or prevention have serious side effects. Therefore, it is necessary to search for new, safer methods of treatment. Natural bee products, such as honey, royal jelly, and bee venom, can be a promising alternative in the treatment of oral cavity bacterial infections. Thus, we performed an extensive literature search to find and summarize all articles about the antibacterial activity of honey, royal jelly, and bee venom. Our analysis showed that these bee products have strong activity against the bacterial strains causing caries, periodontitis, gingivitis, pharyngitis, recurrent aphthous ulcers, supragingival, and subgingival plaque. An analysis of average MIC values showed that honey and royal jelly have the highest antimicrobial activity against Porphyromonas gingivalis and Fusobacterium nucleatum. In turn, bee venom has an antibacterial effect against Streptococcus mutans. Streptococcus sobrinus and Streptoccus pyogenes were the most resistant species to different types of honey, and royal jelly, respectively. Moreover, these products are safer in comparison to the chemical compounds used in the treatment of oral cavity bacterial infections. Since the antimicrobial activity of bee products depends on their chemical composition, more research is needed to standardize the composition of these compounds before they could be used in the treatment of oral cavity bacterial infections.

2020 ◽  
Vol 16 ◽  
Author(s):  
Rajendra Muljibhai Kotadiya ◽  
Foram Narottambhai Patel

Background: Rifampicin (RIF), also known as rifampin, a bactericidal antibiotic having broad antibacterial activity against various gram-positive and gram-negative bacteria act by inhibiting DNA dependent RNA polymerase. RIF has been administered in different dosage forms like tablets, capsules, injections, oral suspension, powder etc. for the treatment of several types of bacterial infections, including tuberculosis, Mycobacterium avium complex, leprosy and Legionnaires’ disease. Introduction: To ensure the quality, efficacy, safety and effectiveness of RIF drug product, effective and reliable analytical methods are utmost important. To quantify RIF for quality control or pharmacokinetic purposes, alternative analytical methods have been developed along with the official compendial methods. Method: In this review paper, an extensive literature survey was done to gather information on various analytical instrumental methods used so far for RIF. Result: These methods were high-performance liquid chromatography (42%), hyphenated techniques (18%), spectroscopy (15%), high-performance thin-layer chromatography or thin-layer chromatography (7%) and miscellaneous (18%). Conclusion: All these methods were selective and specific for the RIF analysis.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 98
Author(s):  
Carla L. Vidal ◽  
Izabela Ferreira ◽  
Paulo S. Ferreira ◽  
Mariana L. C. Valente ◽  
Ana B. V. Teixeira ◽  
...  

Biofilm formation on biomaterials is a challenge in the health area. Antimicrobial substances based on nanomaterials have been proposed to solve this problem. The aim was to incorporate nanostructured silver vanadate decorated with silver nanoparticles (β-AgVO3) into dental porcelains (IPS Inline and Ex-3 Noritake), at concentrations of 2.5% and 5%, and evaluate the surface characteristics (by SEM/EDS), antimicrobial activity (against Streptococcus mutans, Streptococcus sobrinus, Aggregatibacter actinomycetemcomitans, and Pseudomonas aeruginosa), silver (Ag+) and vanadium (V4+/V5+) ions release, and mechanical properties (microhardness, roughness, and fracture toughness). The β-AgVO3 incorporation did not alter the porcelain’s components, reduced the S. mutans, S. sobrinus and A. actinomycetemcomitans viability, increased the fracture toughness of IPS Inline, the roughness for all groups, and did not affect the microhardness of the 5% group. Among all groups, IPS Inline 5% released more Ag+, and Ex-3 Noritake 2.5% released more V4+/V5+. It was concluded that the incorporation of β-AgVO3 into dental porcelains promoted antimicrobial activity against S. mutans, S. sobrinus, and A. actinomycetemcomitans (preventing biofilm formation), caused a higher release of vanadium than silver ions, and an adequate mechanical behavior was observed. However, the incorporation of β-AgVO3 did not reduce P. aeruginosa viability and increased the surface roughness of dental porcelains.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 717
Author(s):  
Rita Abou Nader ◽  
Rawan Mackieh ◽  
Rim Wehbe ◽  
Dany El El Obeid ◽  
Jean Marc Sabatier ◽  
...  

Honeybees are one of the most marvelous and economically beneficial insects. As pollinators, they play a vital role in every aspect of the ecosystem. Beehive products have been used for thousands of years in many cultures for the treatment of various diseases. Their healing properties have been documented in many religious texts like the Noble Quran and the Holy Bible. Honey, bee venom, propolis, pollen and royal jelly all demonstrated a richness in their bioactive compounds which make them effective against a variety of bacterial strains. Furthermore, many studies showed that honey and bee venom work as powerful antibacterial agents against a wide range of bacteria including life-threatening bacteria. Several reports documented the biological activities of honeybee products but none of them emphasized on the antibacterial activity of all beehive products. Therefore, this review aims to highlight the antibacterial activity of honey, bee venom, propolis, pollen and royal jelly, that are produced by honeybees.


2021 ◽  
Vol 11 (3) ◽  
pp. 1180
Author(s):  
Kinga Paruch ◽  
Łukasz Popiołek ◽  
Anna Biernasiuk ◽  
Anna Berecka-Rycerz ◽  
Anna Malm ◽  
...  

Bacterial infections, especially those caused by strains resistant to commonly used antibiotics and chemotherapeutics, are still a current threat to public health. Therefore, the search for new molecules with potential antimicrobial activity is an important research goal. In this article, we present the synthesis and evaluation of the in vitro antimicrobial activity of a series of 15 new derivatives of 4-methyl-1,2,3-thiadiazole-5-carboxylic acid. The potential antimicrobial effect of the new compounds was observed mainly against Gram-positive bacteria. Compound 15, with the 5-nitro-2-furoyl moiety, showed the highest bioactivity: minimum inhibitory concentration (MIC) = 1.95–15.62 µg/mL and minimum bactericidal concentration (MBC)/MIC = 1–4 µg/mL.


2021 ◽  
Vol 9 (6) ◽  
pp. 1249
Author(s):  
Johannes Koehbach ◽  
Jurnorain Gani ◽  
Kai Hilpert ◽  
David J Craik

According to the World Health Organization (WHO) the development of resistance against antibiotics by microbes is one of the most pressing health concerns. The situation will intensify since only a few pharmacological companies are currently developing novel antimicrobial compounds. Discovery and development of novel antimicrobial compounds with new modes of action are urgently needed. Antimicrobial peptides (AMPs) are known to be able to kill multidrug-resistant bacteria and, therefore, of interest to be developed into antimicrobial drugs. Proteolytic stability and toxicities of these peptides are challenges to overcome, and one strategy frequently used to address stability is cyclization. Here we introduced a disulfide-bond to cyclize a potent and nontoxic 9mer peptide and, in addition, as a proof-of-concept study, grafted this peptide into loop 6 of the cyclotide MCoTI-II. This is the first time an antimicrobial peptide has been successfully grafted onto the cyclotide scaffold. The disulfide-cyclized and grafted cyclotide showed moderate activity in broth and strong activity in 1/5 broth against clinically relevant resistant pathogens. The linear peptide showed superior activity in both conditions. The half-life time in 100% human serum was determined, for the linear peptide, to be 13 min, for the simple disulfide-cyclized peptide, 9 min, and, for the grafted cyclotide 7 h 15 min. The addition of 10% human serum led to a loss of antimicrobial activity for the different organisms, ranging from 1 to >8-fold for the cyclotide. For the disulfide-cyclized version and the linear version, activity also dropped to different degrees, 2 to 18-fold, and 1 to 30-fold respectively. Despite the massive difference in stability, the linear peptide still showed superior antimicrobial activity. The cyclotide and the disulfide-cyclized version demonstrated a slower bactericidal effect than the linear version. All three peptides were stable at high and low pH, and had very low hemolytic and cytotoxic activity.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1715
Author(s):  
Nada Elgiddawy ◽  
Shiwei Ren ◽  
Wadih Ghattas ◽  
Waleed M. A. El Rouby ◽  
Ahmed O. El-Gendy ◽  
...  

Designing therapeutic and sensor materials to diagnose and eliminate bacterial infections remains a significant challenge for active theragnostic nanoprobes. In the present work, fluorescent/electroactive poly(3-hexylthiophene) P3HT nanoparticles (NPs) stabilized with quaternary ammonium salts using cetyltrimethylammonium bromide (CTAB), (CTAB-P3HT NPs) were prepared using a simple mini-emulsion method. The morphology, spectroscopic properties and electronic properties of CTAB-P3HT NPs were characterized by DLS, zeta potential, SEM, TEM, UV-vis spectrophotometry, fluorescence spectroscopy and electrochemical impedance spectroscopy (EIS). In an aqueous solution, CTAB-P3HT NPs were revealed to be uniformly sized, highly fluorescent and present a highly positively charged NP surface with good electroactivity. Dual detection was demonstrated as the binding of the bacteria to NPs could be observed by fluorescence quenching as well as by the changes in EIS. Binding of E. coli to CTAB-P3HT NPs was demonstrated and LODs of 5 CFU/mL and 250 CFU/mL were obtained by relying on the fluorescence spectroscopy and EIS, respectively. The antimicrobial activity of CTAB-P3HT NPs on bacteria and fungi was also studied under dark and nutritive conditions. An MIC and an MBC of 2.5 µg/mL were obtained with E. coli and with S. aureus, and of 0.312 µg/mL with C. albicans. Additionally a good biocompatibility toward normal human cells (WI38) was observed, which opens the way to their possible use as a therapeutic agent.


Author(s):  
Shobha Kl ◽  
Amita Shobha Rao ◽  
Pai Ksr ◽  
Sujatha Bhat

Objective: The objective of this study was to evaluate the antimicrobial activity of leaves of Anacardium occidentale (A. occidentale) against microorganisms including multidrug-resistant (MDR) bacteria. Methods: Agar well diffusion method was employed to demonstrate the antimicrobial activity of leaves A. occidentale. Ethanol and aqueous extracts of the leaves were used against microorganisms, which included American type culture collection strains of Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, and Pseudomonas aeruginosa and the clinical isolates of Streptococcus pneumoniae, Candida albicans, MDR Escherichia coli, and MDR Klebsiella pneumoniae. Results: The ethanolic extract of leaves of A. occidentale showed significant antimicrobial activity. Aqueous extract had mild antifungal activity. Conclusion: Ethanolic extract of leaves of A. occidentale could be a good source for the antibacterials to combat MDR bacterial infections. Further studies are necessary for these potent plant extracts to evaluate the in vivo efficacy and toxicity.


2018 ◽  
Vol 62 (1) ◽  
pp. 111-123 ◽  
Author(s):  
Walerij Isidorow ◽  
Stanisław Witkowski ◽  
Piotr Iwaniuk ◽  
Monika Zambrzycka ◽  
Izabela Swiecicka

Abstract Honey is valued for its therapeutic qualities which are attributed among others to its antibacterial multifactorial properties. However, all the factors that influence these properties have not been identified. The present study is focused on the antibacterial action of fatty acids originating from royal jelly, the larval food of honeybees. Aliphatic C8-C12 acids characteristic of this bee product had previously been identified in more than fifty different samples of honey originating from seven countries and in eleven samples of Polish herbhoney. Experiments were performed to ascertain the influence of acidity on the antimicrobial activity of the acids. In acidic nutrient media all tested aliphatic hydroxyacids and unsaturated dicarboxylic acids demonstrated antibacterial action against different microbes with minimal inhibitory concentrations between 0.048 and 3.125 mM. Our results confirm that part of the antibacterial activity of honey contributes to these compounds of bee origin.


2020 ◽  
Vol 22 (97) ◽  
pp. 74-78
Author(s):  
T. I. Stetsko ◽  
Ya. M. Liubenko ◽  
V. N. Padovskyi ◽  
L. L. Ostrovska ◽  
O. Yo. Kalinina ◽  
...  

Fluoroquinolones are critical antimicrobials for both human and veterinary medicine. Due to their unique mechanism of antimicrobial action and good pharmacokinetic properties, they are often the first choice drugs in the treatment of bacterial infections in animals. The purpose of the investigation was to study the antimicrobial activity of a third-generation fluoroquinolone antibiotic of danofloxacin against bacteria, pathogens of respiratory and intestinal infection in goats. The samples of the nasal outflows (respiratory infection) and fecal masses (intestinal infection) were collected from clinically ill goats for microbiological studies. The sensitivity test of the microflora of the biomaterial, carried out by the disco-diffusion method, showed that the microorganisms of all the samples were sensitive to danofloxacin. Bacteria Streptococcus pneumonia (n = 10), Staphylococcus aureus (n = 4) and Escherichia coli (n = 2) were isolated and identified from nasal exudate samples (n = 10). Pathogenic strains of Escherichia coli were isolated from all faecal samples (n = 12). The degree of bacteriostatic activity of danofloxacin was determined by establishing its minimum inhibitory concentration (MIC) for bacterial isolates by sequential dilutions in a liquid nutrient medium. The average MIC of danofloxacin for Streptococcus pneumoniae isolates was 0.26 ± 0.13 μg/ml and for Staphylococcus aureus isolates – 0.25 ± 0.075 μg/ml. For Escherichia coli strains isolated from faeces of goats suffering from coli infection, the average MIC of danofloxacin was 0.38 ± 0.12 μg/ml (range 0.2 to 0.8 μg/ml). Antimicrobial sensitivity testing have shown a high level of bacteriostatic activity of danofloxacin against bacteria, pathogens of respiratory and intestinal infections in goats. This may be the argument for the use of danofloxacin-based chemotherapeutic agents in the treatment of bacterial infections in goats, especially for the empirical approach to therapy.


2019 ◽  
Vol 70 (7) ◽  
pp. 2571-2573
Author(s):  
Alina Andreea Tischer (Tucuina) ◽  
Delia Berceanu Vaduva ◽  
Nicolae Balica ◽  
Alina Heghes ◽  
Adelina Cheveresan ◽  
...  

In recent years, bacterial infections in hospitals have grown particularly due to the development of antibiotic resistance. Recent research targets the discovery of new antibiotics that exhibit broad spectrum of action without adverse effects or minimizing adverse effects. In this study, the activity of biosynthesized silver nanoparticles against three bacteria commonly found in infectious diseases in the ORL sphere was evaluated. The recorded data revealed an activity comparable to that of the standard antibiotics used in these types of infections, with the observation that the activity of the nanoparticles could also be observed in the particular cases of antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document