scholarly journals Novel α + β Type Ti-Fe-Cu Alloys Containing Sn with Pertinent Mechanical Properties

Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Vladislav Zadorozhnyy ◽  
Sergey V. Ketov ◽  
Takeshi Wada ◽  
Stefan Wurster ◽  
Vignesh Nayak ◽  
...  

Rising demand for bone implants has led to the focus on future alternatives of alloys with better biocompatibility and mechanical strength. Thus, this research is dedicated to the synthesis and investigation of new compositions for low-alloyed Ti-based compounds, which conjoin relatively acceptable mechanical properties and low elastic moduli. In this regard, the structural and mechanical properties of α + β Ti-Fe-Cu-Sn alloys are described in the present paper. The alloys were fabricated by arc-melting and tilt-casting techniques which followed subsequent thermo-mechanical treatment aided by dual-axial forging and rolling procedures. The effect of the concentrations of the alloying elements, and other parameters, such as regimes of rolling and dual-axial forging operation, on the microstructure and mechanical properties were thoroughly investigated. The Ti94Fe1Cu1Sn4 alloy with the most promising mechanical properties was subjected to thermo-mechanical treatment. After a single rolling procedure at 750 °C, the alloy exhibited tensile strength and tensile plasticity of 1300 MPa and 6%, respectively, with an elastic modulus of 70 GPa. Such good tensile mechanical properties are explained by the optimal volume fraction balance between α and β phases and the texture alignment obtained, providing superior alternatives in comparison to pure α- titanium alloys.

2017 ◽  
Vol 270 ◽  
pp. 253-257 ◽  
Author(s):  
Ludmila Kučerová ◽  
Martin Bystrianský ◽  
Josef Káňa

TRIP (transformation induced plasticity) steels are low alloyed low carbon steels with complex microstructures consisting of ferrite, bainite and retained austenite. This complex microstructure provides them with excellent strength to ductility balance, making them a member of advanced high strength steels (AHSS) group. Suitable microstructure can be obtained by either heat or thermo-mechanical treatment. A hold in bainite transformation region is an integral part of any form of commercial TRIP steel processing route, as it enables formation of sufficient volume fraction of bainite and also stabilization of retained austenite in the final microstructure. Various bainitic hold temperatures ranging from 350 °C to 500 °C were tested within thermo-mechanical treatment of 0.2C-1.5Mn-0.6S-1.5Al steel and the final microstructures were evaluated with regard to the suitability to TRIP effect and achieved mechanical properties. The microstructures were analyzed by scanning electron microscopy and mechanical properties measured by tensile test.


2010 ◽  
Vol 636-637 ◽  
pp. 253-259 ◽  
Author(s):  
L.A.C. Motta ◽  
Vanderley M. John ◽  
Vahan Agopyan

The cross section variation, mechanical properties and moisture absorption of vegetable sisal fibres compressed at temperatures of 120, 160 and 200 °C were determined and compared with values obtained in non-compressed fibres. The thermo-mechanical treatment carried out resulted in a relevant increasing of fibre stiffness (elastic modulus) and decreasing of fibre moisture absorption.


2013 ◽  
Vol 438-439 ◽  
pp. 249-252 ◽  
Author(s):  
Zhe Jin ◽  
Cheng Ya Wang

An experimental study has been conducted to investigate the effect of the fraction of PVA fiber on the mechanical properties of high-performance concrete. The mechanical properties include compressive strength, splitting tensile strength and compressive elastic modulus. On the basis of the experimental results of the specimens of six sets of mix proportions, the mechanism of PVA fiber acting on these mechanical properties has been analyzed in details. The results indicate that there is a tendency of increase in the compressive strength and splitting tensile strength when the fiber volume fraction is below 0.08%, and the compressive elastic modulus of high-performance concrete decreases gradually with the increasing volume fraction of PVA fiber with appropriate content.


2011 ◽  
Vol 335-336 ◽  
pp. 137-141 ◽  
Author(s):  
Yuong Chen ◽  
Chang Jiang Zhang ◽  
Fan Tao Kong ◽  
Hong Zhi Niu ◽  
Fang Wu ◽  
...  

In the present study, Ti-6Al-2.5Sn-4Zr-0.7Mo-0.3Si-0.3Y alloy matrix composites reinforced with TiB and TiC were fabricated by combustion-assisted cast utilizing the reaction between titanium and B4C, graphite. The microstructure, room temperature mechanical properties were presented and discussed. Microstructural analysis of the composites revealed that the prior β grain size as well as the thickness of α colony significantly refined with increasing of volume fraction. At room temperature (RT), tensile strength and elastic modulus increase significantly, while the ductility drops gradually possibly because of the cracking of TiB whiskers and TiC particles.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1036
Author(s):  
Eduardo Colin García ◽  
Alejandro Cruz Ramírez ◽  
Guillermo Reyes Castellanos ◽  
José Federico Chávez Alcalá ◽  
Jaime Téllez Ramírez ◽  
...  

Ductile iron camshafts low alloyed with 0.2 and 0.3 wt % vanadium were produced by one of the largest manufacturers of the ductile iron camshafts in México “ARBOMEX S.A de C.V” by a phenolic urethane no-bake sand mold casting method. During functioning, camshafts are subject to bending and torsional stresses, and the lobe surfaces are highly loaded. Thus, high toughness and wear resistance are essential for this component. In this work, two austempering ductile iron heat treatments were evaluated to increase the mechanical properties of tensile strength, hardness, and toughness of the ductile iron camshaft low alloyed with vanadium. The austempering process was held at 265 and 305 °C and austempering times of 30, 60, 90, and 120 min. The volume fraction of high-carbon austenite was determined for the heat treatment conditions by XRD measurements. The ausferritic matrix was determined in 90 min for both austempering temperatures, having a good agreement with the microstructural and hardness evolution as the austempering time increased. The mechanical properties of tensile strength, hardness, and toughness were evaluated from samples obtained from the camshaft and the standard Keel block. The highest mechanical properties were obtained for the austempering heat treatment of 265 °C for 90 min for the ADI containing 0.3 wt % V. The tensile and yield strength were 1200 and 1051 MPa, respectively, while the hardness and the energy impact values were of 47 HRC and 26 J; these values are in the range expected for an ADI grade 3.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548 ◽  
Author(s):  
Leonid Agureev ◽  
Valeriy Kostikov ◽  
Zhanna Eremeeva ◽  
Svetlana Savushkina ◽  
Boris Ivanov ◽  
...  

The article presents the study of alumina nanoparticles’ (nanofibers) concentration effect on the strength properties of pure nickel. The samples were obtained by spark plasma sintering of previously mechanically activated metal powders. The dependence of the grain size and the relative density of compacts on the number of nanofibers was investigated. It was found that with an increase in the concentration of nanofibers, the average size of the matrix particles decreased. The effects of the nanoparticle concentration (0.01–0.1 wt.%) on the elastic modulus and tensile strength were determined for materials at 25 °C, 400 °C, and 750 °C. It was shown that with an increase in the concentration of nanofibers, a 10–40% increase in the elastic modulus and ultimate tensile strength occurred. A comparison of the mechanical properties of nickel in a wide range of temperatures, obtained in this work with materials made by various technologies, is carried out. A description of nanofibers’ mechanisms of influence on the structure and mechanical properties of nickel is given. The possible impact of impurity phases on the properties of nickel is estimated. The tendency of changes in the mechanical properties of nickel, depending on the concentration of nanofibers, is shown.


1997 ◽  
Vol 12 (4) ◽  
pp. 1091-1101 ◽  
Author(s):  
Seunggu Kang ◽  
Hongy Lin ◽  
Delbert E. Day ◽  
James O. Stoffer

The dependence of the optical and mechanical properties of optically transparent polymethyl methacrylate (PMMA) composites on the annealing temperature of BK10 glass fibers was investigated. Annealing was used to modify the refractive index (R.I.) of the glass fiber so that it would more closely match that of PMMA. Annealing increased the refractive index of the fibers and narrowed the distribution of refractive index of the fibers, but lowered their mechanical strength so the mechanical properties of composites reinforced with annealed fibers were not as good as for composites containing as-pulled (chilled) glass fibers. The refractive index of as-pulled 17.1 μm diameter fibers (R.I. = 1.4907) increased to 1.4918 and 1.4948 after annealing at 350 °C to 500 °C for 1 h or 0.5 h, respectively. The refractive index of glass fibers annealed at 400 °C/1 h best matched that of PMMA at 589.3 nm and 25 °C, so the composite reinforced with those fibers had the highest optical transmission. Because annealed glass fibers had a more uniform refractive index than unannealed fibers, the composites made with annealed fibers had a higher optical transmission. The mechanical strength of annealed fiber/PMMA composites decreased as the fiber annealing temperature increased. A composite containing fibers annealed at 450 °C/1 h had a tensile strength 26% lower than that of a composite made with as-pulled fibers, but 73% higher than that for unreinforced PMMA. This decrease was avoided by treating annealed fibers with HF. Composites made with annealed and HF (10 vol. %)-treated (for 30 s) glass fibers had a tensile strength (∼200 MPa) equivalent to that of the composites made with as-pulled fibers. However, as the treatment time in HF increased, the tensile strength of the composites decreased because of a significant reduction in diameter of the glass fiber which reduced the volume percent fiber in the composite.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Haoliang Huang ◽  
Guang Ye

In this research, self-healing due to further hydration of unhydrated cement particles is taken as an example for investigating the effects of capsules on the self-healing efficiency and mechanical properties of cementitious materials. The efficiency of supply of water by using capsules as a function of capsule dosages and sizes was determined numerically. By knowing the amount of water supplied via capsules, the efficiency of self-healing due to further hydration of unhydrated cement was quantified. In addition, the impact of capsules on mechanical properties was investigated numerically. The amount of released water increases with the dosage of capsules at different slops as the size of capsules varies. Concerning the best efficiency of self-healing, the optimizing size of capsules is 6.5 mm for capsule dosages of 3%, 5%, and 7%, respectively. Both elastic modulus and tensile strength of cementitious materials decrease with the increase of capsule. The decreasing tendency of tensile strength is larger than that of elastic modulus. However, it was found that the increase of positive effect (the capacity of inducing self-healing) of capsules is larger than that of negative effects (decreasing mechanical properties) when the dosage of capsules increases.


2015 ◽  
Vol 749 ◽  
pp. 278-281
Author(s):  
Jia Horng Lin ◽  
Jing Chzi Hsieh ◽  
Jin Mao Chen ◽  
Wen Hao Hsing ◽  
Hsueh Jen Tan ◽  
...  

Geotextiles are made of polymers, and their conjunction with different processes and materials can provide geotextiles with desirable characteristics and functions, such as filtration, separation, and drainage, and thereby meets the environmental requirements. Chemical resistant and mechanical strong polymers, including polyester (PET) and polypropylene (PP), are thus used to prolong the service life of the products made by such materials. This study proposes highly air permeable geotextiles that are made with different thicknesses and various needle punching speeds, and the influences of these two variables over the pore structure and mechanical properties are then examined. PET fibers, PP fibers, and recycled Kevlar fibers are blended, followed by being needle punched with differing spaces and speeds to form geotextiles with various thicknesses and porosities. The textiles are then evaluated for their mechanical strength and porosity. The test results show that a thickness of 4.5 cm and 1.5 cm demonstrate an influence on the tensile strength of the geotextiles, which is ascribed to the webs that are incompletely needle punched. However, the excessive needle punching speed corresponding to a thickness of 0.2 cm results in a decrease in tensile strength, but there is also an increase in the porosity of the geotextiles.


2015 ◽  
Vol 799-800 ◽  
pp. 115-119 ◽  
Author(s):  
Anika Zafiah M. Rus ◽  
Nur Munirah Abdullah ◽  
M.F.L. Abdullah ◽  
M. Izzul Faiz Idris

Graphite reinforced bio-based epoxy composites with different particulate fractions of graphite were investigated for mechanical properties such as tensile strength, elastic modulus and elongation at break. The graphite content was varied from 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.%, 30 wt.% by weight percent in the composites. The results showed that the mechanical properties of the composites mainly depend on dispersion condition of the treated graphite filler, aggregate structure and strong interfacial bonding between treated graphite in the bio-based epoxy matrix. The composites showed improved tensile strength and elastic modulus with increase treated graphite weight loading. This also revealed the composites with increasing filler content was decreasing the elongation at break.


Sign in / Sign up

Export Citation Format

Share Document