scholarly journals The Non-Coding RNA Journal Club: Highlights on Recent Papers

2015 ◽  
Vol 1 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Manuela Ferracin ◽  
Daniel Gautheret ◽  
Florent Hubé ◽  
Sendurai Mani ◽  
John Mattick ◽  
...  

The number of papers dealing with new modus operandi or new biological functions of non-coding RNAs published in recent years has indeed exploded. A simple search for ‘non-coding RNA’ in Pubmed on 10 June 2015 yielded 128,649 articles, half of which were published in the last 10 years [1]. Every researcher in this field knows that he has something to learn and can discover new ideas, new concepts or new tools from studies made in models others than the ones used in its lab. The Scientific board of Non-Coding RNA publishes here its first Journal Club and highlights, in about hundred words, a selection of the most interesting papers published recently. We hope we will tease your curiosity and encourage you to read full papers outside of your research area that you may not have read otherwise. [...]

ExRNA ◽  
2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Fangfang Jin ◽  
Zhigang Guo

Abstract The discovery of small non-coding RNAs, such as miRNA and piRNA, has dramatically changed our understanding of the role RNA plays in organisms. Recent studies show that a novel small non-coding RNA generated from cleavage of tRNA or pre-tRNA, called tRNA-derived small RNA (tsRNA), serves as a new regulator of gene expression. tsRNA has been determined participate in regulating some specific physiological and pathological processes. Although knowledge regarding the biological roles of miRNA and piRNA is expanding, whether tsRNAs play similar roles remains poorly understood. Here, we review the current knowledge regarding the mechanisms of action and biological functions of tsRNAs in intracellular, extracellular and intergenerational inheritance, and highlight the potential application of tsRNAs in human diseases, and present the current problems and future research directions.


2020 ◽  
Vol 21 (3) ◽  
pp. 1027 ◽  
Author(s):  
Kazimierczyk ◽  
Kasprowicz ◽  
Kasprzyk ◽  
Wrzesinski

The application of a new generation of sequencing techniques has revealed that most of the genome has already been transcribed. However, only a small part of the genome codes proteins. The rest of the genome "dark matter” belongs to divergent groups of non-coding RNA (ncRNA), that is not translated into proteins. There are two groups of ncRNAs, which include small and long non-coding RNAs (sncRNA and lncRNA respectively). Over the last decade, there has been an increased interest in lncRNAs and their interaction with cellular components. In this review, we presented the newest information about the human lncRNA interactome. The term lncRNA interactome refers to cellular biomolecules, such as nucleic acids, proteins, and peptides that interact with lncRNA. The lncRNA interactome was characterized in the last decade, however, understanding what role the biomolecules associated with lncRNA play and the nature of these interactions will allow us to better understand lncRNA's biological functions in the cell. We also describe a set of methods currently used for the detection of lncRNA interactome components and the analysis of their interactions. We think that such a holistic and integrated analysis of the lncRNA interactome will help to better understand its potential role in the development of organisms and cancers.


2020 ◽  
Vol 21 (10) ◽  
pp. 3711
Author(s):  
Melina J. Sedano ◽  
Alana L. Harrison ◽  
Mina Zilaie ◽  
Chandrima Das ◽  
Ramesh Choudhari ◽  
...  

Genome-wide RNA sequencing has shown that only a small fraction of the human genome is transcribed into protein-coding mRNAs. While once thought to be “junk” DNA, recent findings indicate that the rest of the genome encodes many types of non-coding RNA molecules with a myriad of functions still being determined. Among the non-coding RNAs, long non-coding RNAs (lncRNA) and enhancer RNAs (eRNA) are found to be most copious. While their exact biological functions and mechanisms of action are currently unknown, technologies such as next-generation RNA sequencing (RNA-seq) and global nuclear run-on sequencing (GRO-seq) have begun deciphering their expression patterns and biological significance. In addition to their identification, it has been shown that the expression of long non-coding RNAs and enhancer RNAs can vary due to spatial, temporal, developmental, or hormonal variations. In this review, we explore newly reported information on estrogen-regulated eRNAs and lncRNAs and their associated biological functions to help outline their markedly prominent roles in estrogen-dependent signaling.


2020 ◽  
Vol 49 (D1) ◽  
pp. D969-D980 ◽  
Author(s):  
Jiaxin Chen ◽  
Jian Zhang ◽  
Yu Gao ◽  
Yanyu Li ◽  
Chenchen Feng ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) have been proven to play important roles in transcriptional processes and various biological functions. Establishing a comprehensive collection of human lncRNA sets is urgent work at present. Using reference lncRNA sets, enrichment analyses will be useful for analyzing lncRNA lists of interest submitted by users. Therefore, we developed a human lncRNA sets database, called LncSEA, which aimed to document a large number of available resources for human lncRNA sets and provide annotation and enrichment analyses for lncRNAs. LncSEA supports >40 000 lncRNA reference sets across 18 categories and 66 sub-categories, and covers over 50 000 lncRNAs. We not only collected lncRNA sets based on downstream regulatory data sources, but also identified a large number of lncRNA sets regulated by upstream transcription factors (TFs) and DNA regulatory elements by integrating TF ChIP-seq, DNase-seq, ATAC-seq and H3K27ac ChIP-seq data. Importantly, LncSEA provides annotation and enrichment analyses of lncRNA sets associated with upstream regulators and downstream targets. In summary, LncSEA is a powerful platform that provides a variety of types of lncRNA sets for users, and supports lncRNA annotations and enrichment analyses. The LncSEA database is freely accessible at http://bio.liclab.net/LncSEA/index.php.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sung-Hyun Kim ◽  
Key-Hwan Lim ◽  
Sumin Yang ◽  
Jae-Yeol Joo

AbstractBrain tumors are associated with adverse outcomes despite improvements in radiation therapy, chemotherapy, and photodynamic therapy. However, treatment approaches are evolving, and new biological phenomena are being explored to identify the appropriate treatment of brain tumors. Long non-coding RNAs (lncRNAs), a type of non-coding RNA longer than 200 nucleotides, regulate gene expression at the transcriptional, post-transcriptional, and epigenetic levels and are involved in a variety of biological functions. Recent studies on lncRNAs have revealed their aberrant expression in various cancers, with distinct expression patterns associated with their instrumental roles in cancer. Abnormal expression of lncRNAs has also been identified in brain tumors. Here, we review the potential roles of lncRNAs and their biological functions in the context of brain tumors. We also summarize the current understanding of the molecular mechanisms and signaling pathways related to lncRNAs that may guide clinical trials for brain tumor therapy.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Paz Nombela ◽  
Borja Miguel-López ◽  
Sandra Blanco

AbstractRNA modifications have recently emerged as critical posttranscriptional regulators of gene expression programmes. Significant advances have been made in understanding the functional role of RNA modifications in regulating coding and non-coding RNA processing and function, which in turn thoroughly shape distinct gene expression programmes. They affect diverse biological processes, and the correct deposition of many of these modifications is required for normal development. Alterations of their deposition are implicated in several diseases, including cancer. In this Review, we focus on the occurrence of N6-methyladenosine (m6A), 5-methylcytosine (m5C) and pseudouridine (Ψ) in coding and non-coding RNAs and describe their physiopathological role in cancer. We will highlight the latest insights into the mechanisms of how these posttranscriptional modifications influence tumour development, maintenance, and progression. Finally, we will summarize the latest advances on the development of small molecule inhibitors that target specific writers or erasers to rewind the epitranscriptome of a cancer cell and their therapeutic potential.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiu Liu ◽  
Chanyuan Liu ◽  
Aijun Zhang ◽  
Qi Wang ◽  
Jiao Ge ◽  
...  

Abstract Background Dysregulation of long non-coding RNAs has been implied to connect with cancer progression. This research was to decipher the mechanism of long non-coding RNA SDCBP2-AS1 in ovarian cancer (OC) through regulation of microRNA (miR)-100-5p and ependymin-related protein 1 (EPDR1). Methods LncRNA SDCBP2-AS1 and EPDR1 levels in OC were assessed by Gene Expression Profiling Interactive Analysis. lncRNA SDCBP2-AS1, miR-100-5p, and EPDR1 levels in OC tissues and cells were determined. SKOV3 and A2780 cells were transfected with lncRNA SDCBP2-AS1, miR-100-5p, and EPDR1-related plasmids or sequences, and then their functions in cell viability, apoptosis, migration, and invasion were evaluated. The interplay of lncRNA SDCBP2-AS1, miR-100-5p, and EPDR1 was clarified. Results LncRNA SDCBP2-AS1 and EPDR1 levels were suppressed whilst miR-100-5p level was elevated in OC. After upregulating lncRNA SDCBP2-AS1 or EPDR1, viability, migration, and invasion of OC cells were impaired, and apoptosis rate was increased. Downregulating EPDR1 or upregulating miR-100-5p partially mitigated upregulated lncRNA SDCBP2-AS1-induced impacts on the biological functions of OC cells. LncRNA SDCBP2-AS1 sponged miR-100-5p, and EPDR1 was targeted by miR-100-5p. Conclusion It is illustrated that lncRNA SDCBP2-AS1 regulates EPDR1 by sponge adsorption of miR-100-5p to inhibit the progression of OC.


2022 ◽  
Vol 14 ◽  
Author(s):  
Zhen Lan ◽  
Yanting Chen ◽  
Jiali Jin ◽  
Yun Xu ◽  
Xiaolei Zhu

Alzheimer's disease (AD), a heterogeneous neurodegenerative disorder, is the most common cause of dementia accounting for an estimated 60–80% of cases. The pathogenesis of AD remains unclear, and no curative treatment is available so far. Increasing evidence has revealed a vital role of non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), in AD. LncRNAs contribute to the pathogenesis of AD via modulating amyloid production, Tau hyperphosphorylation, mitochondrial dysfunction, oxidative stress, synaptic impairment and neuroinflammation. This review describes the biological functions and mechanisms of lncRNAs in AD, indicating that lncRNAs may provide potential therapeutic targets for the diagnosis and treatment of AD.


2021 ◽  
Vol 27 (2) ◽  
pp. 3793-3798
Author(s):  
Yordanka Doneva ◽  
◽  
Veselin Valkov ◽  
Yavor Kashlov ◽  
Galya Mihaylova ◽  
...  

Circular RNA (circRNAs) belong to the long non-coding RNA family, but unlike the linear RNA in circular RNA, the 3’ and 5’ end in the RNA molecule are joined together, forming their circular structure. Until recently, circRNAs have been believed to be a side product of splicing, but now it is known that they have a wide range of biological functions, from regulators of gene expression to regulators of other non-coding RNAs - microRNAs (miRNAs). CircRNAs have the potential of being therapeutic targets and biomarkers for diseases. There are little data and only several investigations about this type of RNAs in myocardial infarction in humans. This review summarizes the role of some new circRNA – miRNA interactions in the development of Myocardial Infarction.


Author(s):  
Yanlei Yang ◽  
Suying Liu ◽  
Chengmei He ◽  
Zhilei Chen ◽  
Taibiao Lyu ◽  
...  

Given the self-renewal, multi-differentiation, immunoregulatory, and tissue maintenance properties, mesenchymal stem cells (MSCs) are promising candidates for stem cell-based therapies. Breakthroughs have been made in uncovering MSCs as key contributors to homeostasis and the regenerative repair of tissues and organs derived from three germ layers. MSC differentiation into specialized cell types is sophisticatedly regulated, and accumulating evidence suggests long non-coding RNAs (lncRNAs) as the master regulators of various biological processes including the maintenance of homeostasis and multi-differentiation functions through epigenetic, transcriptional, and post-translational mechanisms. LncRNAs are ubiquitous and generally referred to as non-coding transcripts longer than 200 bp. Most lncRNAs are evolutionary conserved and species-specific; however, the weak conservation of their sequences across species does not affect their diverse biological functions. Although numerous lncRNAs have been annotated and studied, they are nevertheless only the tip of the iceberg; the rest remain to be discovered. In this review, we characterize MSC functions in homeostasis and highlight recent advances on the functions and mechanisms of lncRNAs in regulating MSC homeostasis and differentiation. We also discuss the current challenges and perspectives for understanding the roles of lncRNAs in MSC functions in homeostasis, which could help develop promising targets for MSC-based therapies.


Sign in / Sign up

Export Citation Format

Share Document