scholarly journals Green Energy Harvester from Vibrations Based on Bacterial Cellulose

Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 136
Author(s):  
Carlo Trigona ◽  
Salvatore Graziani ◽  
Giovanna Di Pasquale ◽  
Antonino Pollicino ◽  
Rossella Nisi ◽  
...  

A bio-derived power harvester from mechanical vibrations is here proposed. The harvester aims at using greener fabrication technologies and reducing the dependence from carbon-based fossil energy sources. The proposed harvester consists mainly of biodegradable matters. It is based on bacterial cellulose, produced by some kind of bacteria, in a sort of bio-factory. The cellulose is further impregnated with ionic liquids and covered with conducting polymers. Due to the mechanoelectrical transduction properties of the composite, an electrical signal is produced at the electrodes, when a mechanical deformation is imposed. Experimental results show that the proposed system is capable of delivering electrical energy on a resistive load. Applications can be envisaged on autonomous or quasi-autonomous electronics, such as wireless sensor networks, distributed measurement systems, wearable, and flexible electronics. The production technology allows for fabricating the harvester with low power consumption, negligible amounts of raw materials, no rare elements, and no pollutant emissions.

Cellulose ◽  
2021 ◽  
Author(s):  
Katri S. Kontturi ◽  
Koon-Yang Lee ◽  
Mitchell P. Jones ◽  
William W. Sampson ◽  
Alexander Bismarck ◽  
...  

Abstract Cellulose nanopapers provide diverse, strong and lightweight templates prepared entirely from sustainable raw materials, cellulose nanofibers (CNFs). Yet the strength of CNFs has not been fully capitalized in the resulting nanopapers and the relative influence of CNF strength, their bonding, and biological origin to nanopaper strength are unknown. Here, we show that basic principles from paper physics can be applied to CNF nanopapers to illuminate those relationships. Importantly, it appeared that ~ 200 MPa was the theoretical maximum for nanopapers with random fibril orientation. Furthermore, we demonstrate the contrast in tensile strength for nanopapers prepared from bacterial cellulose (BC) and wood-based nanofibrillated cellulose (NFC). Endemic amorphous polysaccharides (hemicelluloses) in NFC act as matrix in NFC nanopapers, strengthening the bonding between CNFs just like it improves the bonding between CNFs in the primary cell wall of plants. The conclusions apply to all composites containing non-woven fiber mats as reinforcement. Graphic abstract


Author(s):  
K. Boddenberg ◽  
B. Kock ◽  
M. Dorfman ◽  
L. Russo ◽  
M. Nestler

Abstract Air separation plants use centrifugal compressors where air and electrical energy are the only raw materials used in the production process. So energy costs play a crucial role and the compressors are heavily penalized when guaranteed performance levels are not achieved. In order to better generate performance, abradable coatings, previously used in the gas turbine industry, have been designed into turbocompressors. This paper will show the optimization and performance improvements of a new aluminium silicon-boron nitride material.


2018 ◽  
Vol 67 ◽  
pp. 04011
Author(s):  
Sunaryo Sunaryo ◽  
Adri Wirawan Ramadhani

Indonesia has more than 17,000 islands and has plenty of beautiful beaches and underwater spots which have great potential for maritime tourism. Tourism was ranked 3rd on Indonesia's foreign income and plays an important role for the country’s ecomony. Despite having potential advantages, the government has not yet maximized its efforts to develop the attractiveness of its maritime tourism. Beside the beautiful spots Indonesia is also blessed with all year long sun shine, which could be tapped as renewable and green energy as substitution to fossil fuel. Refer to these great advantages of natural resources the research was aimed to support the government’s program in developing its maritime tourism and to promote the use of green and renewable energy by designing a solar-powered tourism recreational boat which has 12 meters of length. The paper is focused on the design of solar energy and its electrical system, which includes conversion of solar energy to electrical energy and store it in the battery, the required electrical power is also predicted based on the appliances and equipment installed in the boat, the optimum attachment of solar panels on the boat structure is also calculated. All the methods and information we use are obtained from literature study, discussion with experts, and surveys to Jagur as solar-powered electric boat from Universitas Indonesia.


2013 ◽  
Vol 37 (3) ◽  
pp. 325-333 ◽  
Author(s):  
Wen-Yang Chang ◽  
Cheng-Hung Hsu

The electromechanical characteristics of PVDF are investigated, including the crystallization, frequency responses, hysteresis, leakage currents, current-voltage characteristics, and fatigue characteristics using X-ray diffraction and an electrometer. Results show that the frequency band of PVDF increases with increasing resistive load and capacitance. The hysteresis area of ΔH slightly increases with increasing input voltage. The magnitude of the current values increases with decreasing delay time at a given drive voltage. PVDF film induced larger degradation when the number of stress cycles was increased to about 105 cumulative cycles.


SINERGI ◽  
2019 ◽  
Vol 23 (3) ◽  
pp. 223
Author(s):  
Akhyar Zuniawan ◽  
Iphov Kumala Sriwana

Currently, many coal-fired powers plants are built to supply electrical energy needs in Indonesia due to relatively inexpensive raw materials and abundant in Indonesia. Handling of coal is mostly done at the power plant using coal handling facilities consisting of ship unloaders, conveyor belts, stock piles, silos or bunkers. The problem that arises in the coal handling facility is dust from coal that fells or hovers in the air so that it can interfere with the environment and health both for workers in the Coal Power and residents around the Coal Power. The purpose of writing this paper is to eliminate the spread of coal dust that arises due to coal handling equipment that is not precise and imperfect. The method used is the Soft System Methodology (SSM), which is a systematic approach used to analyze and solve problems in complex and messy situations. This paper examines the benefits of applying SSM to knowledge management issues in handling coal dust at a power plant. Improvement is done by upgrading coal handling equipment (ship unloader, conveyor belt, stock pile) with the addition of dust suppression, proper sealing system, dust bag, and training to operators on the impact and handling of coal dust and coal handling equipment maintenance, so resulting in a significant decrease in the spread of coal dust, creating a working environment and the environment becomes clean, healthy and safe.


2018 ◽  
Vol 14 (33) ◽  
pp. 389
Author(s):  
Souley Kallo Moutari ◽  
Ayouba Mahamane Abdoulkadri ◽  
Abdourahamane Saidou Boulhassane ◽  
Adamou Rabani ◽  
Ikhiri Khalid

Dye Sensitized-Solar Cells (DSSCs) have been extensively investigated because of their environmental friendliness and low production cost. At the heart of these is the photosensitive pigment that plays a key role in the collection of sunlight radiations and its conversion into electrical energy. However, the toxicity and the cost of pigment synthesis limit the increased use of these prototypes. Natural pigments can be an effective, sustainable, and inexpensive alternative. This paper focuses on determining the main phenolic pigments contents and evaluating the solar light collection capacity of ten (10) tinctorial plants crude extracts, via UV-Visible Spectrophotometry. High concentrations of total polyphenols (46.54 mgEqAG/g), flavonoids (10.95 mgEqQuer/g), anthocyanins (181.9 mgL-1 ), and tannins (40.1 mgL-1 ) were recorded in some extracts of these plants. Absorption spectra showed intense absorption domains around 280 nm in the ultraviolet (UV), and also in the visible (400 to 700 nm). These absorptions would be attributed to the π-π* and n-π* electron transitions of the chromophores present in the anthocyanin, flavonoid, carotenoid, and chlorophyll pigments of these plants. The high contents of pigments and the appropriate spectrophotochemical properties make the extracts of these tinctorial plants to become potential raw materials that are useful in solar energy technology.


Author(s):  
Dinesh Kanvagiya

Abstract: Generating more Power are complex at cheaper cost, also continuous energy supplied are important Hydro power generation is one of the most successful renewable energy resources for the production electrical energy without any environmental hazard and presently it providing more than 86% of all electricity generated by renewable sources worldwide and accounts for about 20% of world electricity. To increase the percentage of green energy in account of world electricity generation the analysis must be performed to get the information about the working conditions of each component in plants so that the required maintenance action should be taken. Maintenance and operation of a hydro power plant is very complicated and the process to calculate and analyzing its compatibility and reliability is very important. In this work introducing a Markov model to evaluate the reliability parameter of THPS-I Sirmour, Rewa. For this work the operational data regarding failure and maintenance time taken to repaired and analysis of all parts of generating unit of the power plant for period of 2010-2015 is considered. The availability and reliability of individual unit of power plant is evaluated by taking into account different reliability Parameters, namely failure rate (λ), repair rate (µ), MTTR, MTTF, MTBF through the collected data and tabulating the required information for the analysis. By this analysis work we can improve reliability of all the components of each unit of power plant. The sub-unit that is commonly failed during operation is like- penstock, butter fly valve, spiral case, turbine, generator, excitation system, speed governor etc. Reliability plays a key role in the cost-effectiveness of systems Keywords: Hydro power plant, Reliability evaluation, Reliability parameters, Markov analysis, Total schedule outage hrs and Total forced outage hrs.


2019 ◽  
Vol 113 ◽  
pp. 03005
Author(s):  
Enrico Valditerra ◽  
Massimo Rivarolo ◽  
Aristide F. Massardo ◽  
Marco Gualco

Wind turbine installation worldwide has increased at unrested pace, as it represents a 100% clean energy with zero CO2 and pollutant emissions. However, visual and acoustic impact of wind turbines is still a drawback, in particular in urban areas. This paper focuses on the performance evaluation of an innovative horizontal axis ducted wind turbine, installed in the harbour of Genova (Italy) in 2018: the turbine was designed in order to minimize visual and acoustic impacts and maximize electrical energy production, also during low wind speed periods. The preliminary study and experimental analyses, performed by the authors in a previous study, showed promising results in terms of energy production, compared to a traditional generator ( factor >2.5 on power output). In the present paper, the test campaign on a scaled-up prototype, installed in the urban area of Genova, is performed, with a twofold objective: (i) comparison of the ducted innovative turbine with a standard one, in order to verify the increase in energy production; (ii) analysis of the innovative turbine for different wind speeds and directions, evaluating the influence of ambient conditions on performance. Finally, based on the obtained results, an improved setup is proposed for the ducted wind turbine, in order to further increase energy production mitigating its visual impact.


Author(s):  
Shrikant Saini ◽  
Ajay Kumar Baranwal ◽  
Tomohide Yabuki ◽  
Shuzi Hayase ◽  
Koji Miyazaki

Abstract Thermoelectric materials can convert thermal energy into electrical energy without any moving part which leads its path of application to the era of printed and flexible electronics. CsSnI3 perovskite can be a promising thermoelectric material for the next-generation energy conversion due to its intrinsic ultra-low thermal conductivity and large Seebeck coefficient but enhancement of electrical conductivity is still required. CsSnI3 can be prepared by wet process which can reduce the cost of flexible thermoelectric module. In this work, CsSnI3 thin films were fabricated by spin coating wet process. Thin films were structurally and chemically characterized using XRD and SEM. Thermoelectric properties such as electrical conductivity, Seebeck coefficient, and thermal conductivity were measured at 300 K. Uni-leg thermoelectric modules were fabricated on a glass substrate using CsSnI3 thin films. The maximum output is about 0.8 nW for 5 legs (25 mm × 3 mm × 600 nm) modules for the temperature difference of about 5°C. These results will open a new pathway to thermoelectric modules for flexible electronics in spite of low output power.


Author(s):  
Sasmita Behera ◽  
Matruprasad Jyotiranjan

Wind is a source for generating clean and economical electrical energy with a proper harnessing mechanism. For a wind energy conversion system (WECS), maximum power extraction with optimum power quality is required. In this article, the grid power quality is enhanced, using a multilevel inverter which provides smoother and pure sinusoidal waves as compared to two-level inverter by decreasing total harmonic distortion (THD) in WECS with a permanent magnet synchronous generator (PMSG). Also, a maximum power point tracking (MPPT) algorithm is based on an optimal torque controller, employed to extract more power. In this study, a WECS with a PMSG connected to the local linear resistive load and grid is considered for simulation. A multilevel inverter grid interface is controlled by in phase disposition pulse width modulation (IPD – PWM). The multilevel inverter with MPPT has been acknowledged as superior to a normal two-level inverter without MPPT Controller. Simulation results as observed for fixed and variable wind speed including MPPT demonstrate benefits of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document