Properties of Metal-Fullerene Composites

2019 ◽  
Vol 288 ◽  
pp. 124-129
Author(s):  
E.M. Shpilevsky ◽  
Serguei A. Filatov ◽  
Goliminsee Shilagardi ◽  
Duger Ulam-Orgikh ◽  
Perenlei Tuvshintur ◽  
...  

The results of investigation of mechanical, electrical, thermoelectric and tribological properties of metal-fullerene film composites of Ni-C60and Ti-C60systems is presented. It has been found that doping of metals with fullerenes leads to a significant increase in the strength of the material, and a change in the electrical, optical, and other properties of the material. It is established that metal-fullerene films are characterized by low friction coefficients and high wear resistance. It is experimentally shown that metal-fullerene composite thin films possess a capacitive impedance, that the thermopower of Ti-C60coatings reaches the value of 30 μV/K depending on the Ti/C60ratio.

2005 ◽  
Vol 20 (12) ◽  
pp. 3439-3448 ◽  
Author(s):  
You Zhou ◽  
Kiyoshi Hirao ◽  
Takeshi Yamaguchi ◽  
Kazuo Hokkirigawa

Silicon carbide (SiC) ceramics have good wear resistance but poor friction properties under dry sliding conditions. To lower the friction of SiC, a novel porous carbon material called rice bran carbon (RBC) was added into SiC to make SiC/RBC composite ceramics. The SiC/RBC composites were prepared by mixing one of three kinds of RBC powders having different particle sizes and a fine SiC doped with Al4C3and B4C additives and sintering at 1600 °C for 5 min by a pulse electric current sintering (PECS) method. The mechanical and tribological properties of the SiC/RBC composites were evaluated and compared with those of monolithic SiC, monolithic RBC bulk material, and SiC/graphite composite. The SiC/RBC composites not only had superior fracture strength (3–4 times as high as that of the monolithic RBC material) but also showed low friction coefficients (around 0.25) and high wear resistance (at a level of 10−6mm3N−1m−1) when slid against a silicon carbide ceramic counterface during block-on-ring sliding tests under dry conditions. Compared with the conventional SiC/graphite composite, the SiC/RBC composites had higher mechanical strength, lower friction coefficients, and better wear resistance.


2019 ◽  
Vol 26 (1) ◽  
pp. 402-411 ◽  
Author(s):  
Zhiwei Wu ◽  
Yan Wang ◽  
Sihao Li ◽  
Xiaoyong Wang ◽  
Zhaojun Xu ◽  
...  

AbstractBCN coatings with different chemical compositions were prepared using RF magnetron sputtering via adjusting N2 flow. The influence of N2 flow on the bonding structure, mechanical and tribological properties of coating was studied. The structural analysis indicated the coexistence of B-N, B-C, and N-C bonds, suggesting the formation of a ternary BCN hybridization. The maximum Vickers hardness of 1614.7 HV was obtained at the low N2 flow (5 sccm), whereas the adhesion strength of BCN coatings on 316L stainless steel was improved with an increase of N2 flow. The friction behavior of BCN coatings sliding against different materials (acerbic, beech and lauan wood) was performed using ball-on-disk tribo-meter in air. The low friction coefficient was easier to obtain as sliding against hardwood i.e. acerbic balls. BCN-5 and BCN-10 coatings presented better wear resistance regardless of softwood or hardwood, whilst other two coatings were more suitable for mating softwood i.e. beech and lauan.


Author(s):  
Fei Guo ◽  
Fan Wu ◽  
Fangyong Wu ◽  
Yuming Wang

The tribological properties of self-mated silicon carbide, self-mated cemented carbide, and cemented carbide/silicon carbide under water lubrication were studied. The three matched pairs could achieve low-friction coefficients (0.01–0.03) under certain test conditions. Additionally, the dependence of the friction coefficients on the rotation speed and load were measured. By combining these results with the observed surface topography and wear measurements, it was determined that the three matched pairs were in the hydrodynamic lubrication. In addition, combined with experiments in ethylene glycol and PAO40, it was shown that the actual viscosity of the lubricant had a significant influence on the realization of low friction. Furthermore, matching materials had an influence on the tribological properties, which may be related to the surface wettability of the lubricant.


Author(s):  
Theerkka tharaisanan Rajamanickam ◽  
Kathiresan Marimuthu

Aluminium metal matrix composites (AMMC’s) have been widely used because of their superior properties like high strength to wear ratio, high wear resistance, and higher heat conduction rate. The additions of reinforcements in the form of discontinuous particles lead to an increase in the properties of Metal Matrix Composites (MMC). In this present work, the ALMMC composite was fabricated with the addition of discontinuous reinforcement particles of Zirconium Carbide (ZrC) and Boron Carbide (B4C). The mechanical properties such as tensile strength, hardness, and impact strength were tested as per the ASTM standards. The tribological properties were tested using a pin-on-disc setup under different loading conditions (10, 20, 30, 40 N). Moreover, the morphological characterization of ALMMC was carried out by using the Scanning Electron Microscope (SEM) analysis. Furthermore, the Differential Thermal Analysis (DTA) and Thermogravimetric Analysis (TGA) was accomplished to find the thermal stability of ALMMC. The findings show that the variations of reinforcement of ZrC added had given improved properties like hardness, tensile strength, impact strength and wear resistance.


2015 ◽  
Vol 220-221 ◽  
pp. 693-697 ◽  
Author(s):  
Justinas Gargasas ◽  
Algirdas Vaclovas Valiulis ◽  
Irmantas Gedzevicius ◽  
Hanna Pokhmurska

This paper present the result obtained from new experimental STEIN-MESYFIL 953 V; STEIN-MESYFIL 954 V coatings. The surfacing material was wires of 1.6 mm diameter. The tests aimed at determining wear resistance of coatings sprayed on steel substrate. The investigation shows that the tribological behaviour of new experimental thermal arc sprayed coatings is greatly affected by its microstructural constituents such as porosity, oxide inclusions, and microhardness of coatings. Results show that increasing porosity of coatings twice, it doubles the mass loss. Results for thermal sprayed coatings of all experiments showed their high wear resistance and are discussed.


Author(s):  
A. Paradecka ◽  
K. Lukaszkowicz ◽  
A. Kříž ◽  
R. Potempa

Purpose: The purpose of this article is to characterize and compare the structure, mechanical and tribological properties of low friction DLC and TiC thin films deposited on the austenitic steel X6CrNiMoTi17-12-2 substrate. Design/methodology/approach: In the research, the samples of the DLC and TiC thin films with transition hard AlCrN interlayer deposited by magnetron sputtering and PACVD technology respectively were used. Observations of topography were made using a scanning electron microscope (SEM), and the atomic force microscope (AFM). The structure of samples was performed using a Raman microscope. The microhardness tests of thin films were made by Oliver & Phare method. Findings: Studies confirmed that the combination of research SEM and AFM provide crucial information on the structure and topography of the samples. It was possible to obtain information about the topography parameters and allow for the assessment of morphology and quality of the tested coatings. Study of the structure using Raman spectroscopy revealed the band corresponding to the DLC and TiC thin films. Practical implications: The current application areas for low friction thin films are constantly growing, and the intensive development of techniques requires the use of new technologies what leads to the production of the specific surface layer and a thorough examination. Originality/value: Growing area of low friction coatings with specific properties requires the use of specialized tools aimed at assessing the topography and structures which are responsible for tribological properties.


Author(s):  
A. Paradecka ◽  
K. Lukaszkowicz

Purpose: The purpose of this article is to characterize and compare the microstructure and tribological properties of low friction DLC:Ti and MoS2 thin films deposited on the austenitic steel X6CrNiMoTi17-12-2 substrate. Design/methodology/approach: In the research, the samples of the DLC:Ti and MoS2 thin films deposited by PACVD technology and magnetron sputtering method respectively were used. Observations of topography were made using atomic force microscope (AFM). Adhesion of the coating to the substrate material was verified by the scratch test. The friction coefficient and wear rate of the coating were determined in the ball-on-disc test. Findings: AFM as well as adhesion and friction coefficient tests confirmed low friction nature of MoS2 and DLC:Ti coatings. During the research information on the behaviour of coatings under tribological load was obtained. The investigated coating reveals high wear resistance and good adhesion to the substrate. Practical implications: The area of testing of low-friction thin films is widely studied due to their practical application. Intensive development of new technologies requires the introduction of corresponding layers of both full protective functions and reducing friction. Originality/value: Growing area of low-friction coatings with specific properties requires thorough tribological and topographical research, which is closely related to these properties.


2016 ◽  
Vol 674 ◽  
pp. 239-243
Author(s):  
Gai Zhao ◽  
Qi Hua Wang ◽  
Irina Hussainova ◽  
Qing Jun Ding

Polyimide (PI) composites have been widely used in a space science due to extraordinary properties, such as excellent mechanical and electrical properties, good thermal stability and chemical inertness, as well as high wear resistance. However, atomic oxygen (AO), as one of the main radiated constituents in low earth orbit, had an important influence on the structrural and tribological properties of the polyimide matrix. To investigate the mechanism of AO erosion on polyimide, MoS2/Al2O3/PI composites were fabricated by means of a hot-press molding technique and irradiated by AO in a ground-based simulation system. The chemical composition change of the irradiated surface was examined by X-ray photoelectron spectroscopy (XPS). Then, the friction and sliding wear behavior against GCr15 steel balls were evaluated in a ground-based simulation facility using ball-on-disk tribology test rig. The worn morphologies and radiated surfaces of the materials were observed by Scanning electron microscope (SEM) to reveal the wear mechanism. Experimental analysis indicated that oxidation induced by AO irradiation and degradation of PI molecular chains on the composite’ surface results in change in chemical composition and formation of “carpet-like” structures. Affected layer, gradually formed during the process of irradiation, plays an important role for wear performance of the materials increasing friction coefficient and wear rate. Incorporation of Al2O3 nanofibers and MoS2 nanoparticles is shown to be favourable for AO resistance, which is helpful for improvement in wear resistance of the PI.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2011 ◽  
Author(s):  
Wenhu Li ◽  
Taotao Ai ◽  
Hongfeng Dong ◽  
Guojun Zhang

According to the stoichiometric ratios of Mo-10Si-7B, Mo-12Si-8.5B, Mo-14Si-9.8B, and Mo-25Si-8.5B, some new Mo-Si-B alloys doped with 0.3 wt % lanthanum (III) oxide (La2O3) were prepared via liquid-liquid (L-L) doping, mechanical alloying (MA), and hot-pressing (HP) sintering technology. The phase-composition and microstructure were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The worn surfaces of the plate specimens were studied by confocal laser scanning microscopy (CLSM). Then, the tribological properties of Mo-Si-B alloy doped with sliding plate specimens of 0.3 wt % La2O3 were investigated against the Si3N4 ball specimens. The friction coefficients of Mo-Si-B alloys decreased and the wear rates of the alloys increased with test load. The high-temperature friction and wear behavior of Mo-Si-B alloy are related to the surface-oxidation and contact-deformation of the alloy at a high temperature. The low friction coefficients and the reduced wear rates are thought to be due to the formation of low friction MoO3 films. MoO3 changed the contact state of the friction pairs and behaved as lubricating films.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yuh-Ping Chang ◽  
Jin-Chi Wang ◽  
Jeng-Haur Horng ◽  
Li-Ming Chu ◽  
Yih-Chyun Hwang

The technology of composite heat treatment is used popularly for low friction and wear resistance of drive elements. A large number of papers about the heat treatment technology had been proposed. Especially, the nitride treatment has been used widely for the purpose of wear resistance and low friction in the industry. Therefore, the self-developed vertical ball/disk friction tester with the measurement system was used to study the effects of nitride on the tribological properties of the low carbon alloy steel—SCM415— in this study. The experiments were conducted under dry and severe wear conditions. The variations of friction coefficient and surface magnetization were simultaneously recorded during dynamic friction process. After each test, the microstructures of the wear particles were observed and analyzed under a SEM, and the depth of wear track is measured by means of a surface tester. According to the experimental results, the wear resistance of the specimens with carburizing-nitride is significantly larger than the case of nitride-carburizing. Moreover, the surface magnetization was especially larger for the case of nitride-carburizing. As a result, the wear particles always stay in the interfaces and the wear mechanism becomes complex. Therefore, it is necessary to put nitride after carburizing for the composite heat treatments.


Sign in / Sign up

Export Citation Format

Share Document