Diet-induced obesity promotes systemic inflammation and increased susceptibility to murine visceral leishmaniasis

Parasitology ◽  
2016 ◽  
Vol 143 (12) ◽  
pp. 1647-1655 ◽  
Author(s):  
GLÊNIA DAROS SARNÁGLIA ◽  
LUCIANA POLACO COVRE ◽  
FAUSTO EDMUNDO LIMA PEREIRA ◽  
HERBERT LEONEL DE MATOS GUEDES ◽  
ANA MARIA CAETANO FARIA ◽  
...  

SUMMARYObesity is the main causal factor for metabolic syndrome and chronic systemic inflammation, which impacts on immune function and increases susceptibility to pathogens. Here, we investigated the effect of obesity on the outcome of visceral leishmaniasis caused by Leishmaniasis infantum chagasi. C57BL/6 mice fed with high-sugar and butter diet (HSB) showed a significant increase in body weight, adiposity index and morphological changes in adipocyte. To investigate the consequences of obesity on the specific immunity against Leishmania, both control and HSB diet groups were infected with 107L. infantum chagasi promastigotes in the eighth-week after diet started and euthanized 4 weeks later. HSB-diet fed mice exhibited a significantly higher parasite burden in both liver and spleen compared with control- diet group. Gonadal adipocyte tissue from HSB-diet mice showed increased TNF-α, IL-6 and leptin and diminished IL-10 production compared with control. Cytokines production analysis in the spleen and liver from these animals also demonstrated higher production of IFN-γ, TNF-α, IL-6 and nitric oxide and diminished production of IL-10 and TGF-β, which correlate with inflammatory foci and the cell hyperplasia observed. Taken together, obesity can interfere with responses to pathogen-derived signals and impair the development of protective anti-Leishmania immunity.

2018 ◽  
Vol 27 (4) ◽  
pp. 430-438 ◽  
Author(s):  
Diogo Tiago da Silva ◽  
Maria Luana Alves ◽  
Júlio Cesar Pereira Spada ◽  
Rita de Cássia Viveiros da Silveira ◽  
Trícia Maria Ferreira de Sousa Oliveira ◽  
...  

Abstract Visceral leishmaniasis (VL) is a disease caused by the protozoa Leishmania infantum and can cause an inflammatory reaction in the gastrointestinal tract, however the role of granulocytic cells (neutrophils, eosinophils, and mast cells) in the intestine of dogs infected is not fully understood. We performed a quantitative analysis these cells in the intestinal wall of dogs with canine visceral leishmaniasis (CVL). Twenty dogs were assigned to one of three groups: group 1 (G1, n=8), dogs with CVL and L. infantum amastigotes in the intestine; group 2 (G2, n=9), dogs with CVL but without intestinal amastigotes; and group 3 (G3, n=3), uninfected dogs (control group). Granulocytic cells were counted in the crypt-villus unit (mucosa), submucosa, and muscle layer of the intestinal mucosa. Cell counts were higher in the intestinal wall of dogs from G2 followed by G1 and G3 (p≤0.05). In G1, there was a low inverse correlation between parasite burden of the small intestine and granulocyte counts (r= -0.1, p≤0.01). However, in G2 dogs, mast cell and eosinophil numbers showed positive correlation (r=0.85, p≤0.01). The granulocytic cell hyperplasia observed in the intestine of L. infantum-infected dogs suggests that these cells may be involved in the cell-mediated immune response for parasite elimination.


2022 ◽  
Author(s):  
Yohei Shirakami ◽  
Junichi Kato ◽  
Toshihide Maeda ◽  
Takayasu Ideta ◽  
Hiroyasu Sakai ◽  
...  

Abstract Although liver diseases, including non-alcoholic steatohepatitis (NASH), are associated with skeletal muscle atrophy, the mechanism behind their association has not been fully elucidated. In this study, the effects of aging and NASH on the skeletal muscle and the interaction between the liver and muscle were investigated using a diet-induced NASH model in senescence-accelerated mice (SAM). A total of four groups of SAM and its control mice were fed either an NASH-inducing or control diet. In the SAM/NASH group, the histopathology of NASH and markers of oxidative stress were significant. Skeletal muscles were also markedly atrophied. The expression of the ubiquitin ligase Murf1 in the muscle was significantly increased with muscle atrophy, while that of Tnfa was not significantly different. In contrast, the hepatic Tnfa expression and serum TNF-α levels were significantly increased in the SAM/NASH group. These results suggest that liver-derived TNF-α might promote muscle atrophy associated with steatohepatitis and aging through Murf-1. The metabolomic analysis of skeletal muscle indicated higher spermidine and lower tryptophan levels in the NASH-diet group. The findings of this study revealed an aspect of liver-muscle interaction, which might be important in developing treatments for sarcopenia associated with liver diseases.


2019 ◽  
Vol 97 (11) ◽  
pp. 4548-4556 ◽  
Author(s):  
Xudong Duan ◽  
Gang Tian ◽  
Daiwen Chen ◽  
Linhui Huang ◽  
Dan Zhang ◽  
...  

Abstract The objectives of the current study were to explore the effects of mannan oligosaccharide (MOS) supplementation in the diets of sow and (or) their offspring on intestinal bacteria, intestinal and systemic inflammation in the piglet. A total of 60 multiparous sows (4 ± 1 parity; Landrace × Yorkshire) were fed either control diet (sCON, n = 30) or a diet containing 400 mg kg−1 MOS (sMOS, n = 30) from day 86 of gestation until weaning (day 20 of postpartum). On day 7 of age, offspring (Duroc × Landrace Yorkshire) were assigned within sow treatments and fed control diet (pCON) or diet containing 800 mg kg−1 MOS (pMOS) for 28 d (end at 35 d of age), resulting in four piglet diet groups (n = 15 litters per diet group): sCON-pCON, sCON-pMOS, sMOS-pCON, and sMOS-pMOS. Results found that piglet diet MOS increased or tend to increase Lactobacillus amount in the ileum digesta (P < 0.01) and jejunum digesta (P = 0.07), respectively; while tend to decrease Escherichia coli amount in jejunum digesta (P =0.06) and cecum digesta (P = 0.08). Both sow and piglet diets add MOS (sMOS-pMOS) increased Lactobacillus amount but decreased E. coli amount in jejunum digesta (P < 0.05) compared with the sCON-pCON diet group. In addition, sow diet MOS (rather than piglet diet MOS) increased sIgA content in piglet jejunum mucosa compared with control (P = 0.04). Sow diet MOS decreased toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), and interleukin 8 (IL-8) mRNA levels (P < 0.05) and tended to decrease nuclear factor-κB p65 (NF-κB p65) mRNA level (P = 0.07) in piglet intestinal lymphatic. The interaction effects between sow and piglet diets were found on the mRNA levels of NF- κB p65 (P = 0.03) and IL-8 (P = 0.02) in piglet jejunum. Finally, the sow diet MOS decreased proinflammatory cytokines IL-2 (P < 0.01) and IL-4 (P < 0.01) concentrations in piglet serum. Piglets diet MOS decreased the contents of IL-2 (P = 0.03), IL-4 (P = 0.01) and interferon (IFN)-γ (P < 0.01) while increased anti-inflammatory cytokine IL-10 (P < 0.01) content in serum. The interaction effects between sows and piglet diets on IL-4 (P = 0.02), IL-10 (P < 0.01), and IFN-γ (P = 0.08) were observed. In conclusion, sow and/or piglet diet MOS could improve intestinal microbiota, enhance intestinal mucosal immune competence, and suppress intestinal and systemic inflammation in the piglet.


2021 ◽  
pp. 1-30
Author(s):  
Patrícia Leticia Trindade ◽  
Elaine dos Ramos Soares ◽  
Kim Ohanna Pimenta Inada ◽  
Fabiane Ferreira Martins ◽  
Martina Rudnicki ◽  
...  

Abstract Accumulating evidence indicates that dietary phenolic compounds can prevent obesity-related disorders. We investigated whether the consumption of polyphenol-rich jabuticaba peel and seed powder (JPSP) could ameliorates the progression of diet-induced obesity in mice. Male mice were fed a control diet or a high-fat (HF) diet for 9 weeks. After this period, mice were fed control, HF or HF diets supplemented with 5% (HF-J5), 10% (HF-J10) or 15% (HF-J15) of JPSP, for 4 additional weeks. Supplementation with JPSP not only attenuated HF-induced weight gain and fat accumulation but also ameliorated the pro-inflammatory response associated with obesity, as evidenced by the absence of mast cells in the visceral depot accompanied by lower IL-6 and TNF-α at the tissue and circulating levels. JPSP-supplemented mice also exhibited smaller-sized adipocytes, reduced levels of leptin and higher levels of adiponectin, concomitant with improved glucose metabolism and insulin sensitivity. The magnitude of the observed effects was dependent on JPSP concentration with HF-J10 and HF-J15-fed mice showing metabolic profiles similar to control. This study reveals that the consumption of JPSP protects against the dysfunction of the adipose tissue and metabolic disturbances in obese mice. Thus, these findings indicate the therapeutic potential of the phenolic-rich jabuticaba peel and seed powder in preventing obesity-related disorders.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3573
Author(s):  
Lian-Chun Li ◽  
Zheng-Hong Pan ◽  
De-Sheng Ning ◽  
Yu-Xia Fu

Simonsinol is a natural sesqui-neolignan firstly isolated from the bark of Illicium simonsii. In this study, the anti-inflammatory activity of simonsinol was investigated with a lipopolysaccharide (LPS)-stimulated murine macrophages RAW264.7 cells model. The results demonstrated that simonsinol could antagonize the effect of LPS on morphological changes of RAW264.7 cells, and decrease the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 cells, as determined by Griess assay and enzyme-linked immunosorbent assay (ELISA). Furthermore, simonsinol could downregulate transcription of inducible nitric oxide synthase (iNOS), TNF-α, and IL-6 as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibit phosphorylation of the alpha inhibitor of NF-κB (IκBα) as assayed by Western blot. In conclusion, these data demonstrate that simonsinol could inhibit inflammation response in LPS-stimulated RAW264.7 cells through the inactivation of the nuclear transcription factor kappa-B (NF-κB) signaling pathway.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sang-Kap Han ◽  
Yeon-Jeong Shin ◽  
Dong-Yeon Lee ◽  
Kyung Min Kim ◽  
Seo-Jin Yang ◽  
...  

Abstract Background Gut microbiota closely communicate in the immune system to maintain a balanced immune homeostasis in the gastrointestinal tract of the host. Oral administration of probiotics modulates gut microbiota composition. In the present study, we isolated Lactobacillus rhamnosus HDB1258, which induced tumor necrosis factor (TNF)-α and interleukin (IL)-10 expression in macrophages, from the feces of breastfeeding infants and examined how HDB1258 could regulate the homeostatic immune response in mice with or without lipopolysaccharide (LPS)-induced systemic inflammation. Results Oral administration of HDB1258 significantly increased splenic NK cell cytotoxicity, peritoneal macrophage phagocytosis, splenic and colonic TNF-α expression, TNF-α to IL-10 expression ratio, and fecal IgA level in control mice, while Th1 and Treg cell differentiation was not affected in the spleen. However, HDB1258 treatment significantly suppressed peritoneal macrophage phagocytosis and blood prostaglandin E2 level in mice with LPS-induced systemic inflammation. Its treatment increased LPS-suppressed ratios of Treg to Th1 cell population, Foxp3 to T-bet expression, and IL-10 to TNF-α expression. Oral administration of HDB1258 significantly decreased LPS-induced colon shortening, myeloperoxidase activity and NF-κB+/CD11c+ cell population in the colon, while the ratio of IL-10 to TNF-α expression increased. Moreover, HDB1258 treatment shifted gut microbiota composition in mice with and without LPS-induced systemic inflammation: it increased the Cyanobacteria and PAC000664_g (belonging to Bacteroidetes) populations and reduced Deferribacteres and EU622763_s group (belonging to Bacteroidetes) populations. In particular, PAC001066_g and PAC001072_s populations were negatively correlated with the ratio of IL-10 to TNF-α expression in the colon, while the PAC001070_s group population was positively correlated. Conclusions Oral administered HDB1258 may enhance the immune response by activating innate immunity including to macrophage phagocytosis and NK cell cytotoxicity in the healthy host and suppress systemic inflammation in the host with inflammation by the modulation of gut microbiota and IL-10 to TNF-α expression ratio in immune cells.


2021 ◽  
Vol 22 (12) ◽  
pp. 6373
Author(s):  
Ahmad Jalloh ◽  
Antwoine Flowers ◽  
Charles Hudson ◽  
Dale Chaput ◽  
Jennifer Guergues ◽  
...  

Microglial activity in the aging neuroimmune system is a central player in aging-related dysfunction. Aging alters microglial function via shifts in protein signaling cascades. These shifts can propagate neurodegenerative pathology. Therapeutics require a multifaceted approach to understand and address the stochastic nature of this process. Polyphenols offer one such means of rectifying age-related decline. Our group used mass spectrometry (MS) analysis to explicate the complex nature of these aging microglial pathways. In our first experiment, we compared primary microglia isolated from young and aged rats and identified 197 significantly differentially expressed proteins between these groups. Then, we performed bioinformatic analysis to explore differences in canonical signaling cascades related to microglial homeostasis and function with age. In a second experiment, we investigated changes to these pathways in aged animals after 30-day dietary supplementation with NT-020, which is a blend of polyphenols. We identified 144 differentially expressed proteins between the NT-020 group and the control diet group via MS analysis. Bioinformatic analysis predicted an NT-020 driven reversal in the upregulation of age-related canonical pathways that control inflammation, cellular metabolism, and proteostasis. Our results highlight salient aspects of microglial aging at the level of protein interactions and demonstrate a potential role of polyphenols as therapeutics for age-associated dysfunction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masahiro Kitabatake ◽  
Yoko Matsumura ◽  
Noriko Ouji-Sageshima ◽  
Tatsuki Nishioka ◽  
Atsushi Hara ◽  
...  

AbstractUlcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) induced by dysregulation of the immune response in the intestinal mucosa. Although the underlying mechanisms of UC development are not fully understood, disruption of gut microbiota, “dysbiosis”, is thought to lead to the development of IBD. Persimmon (Ebenaceae Diospyros kaki Thunb.)-derived tannin, which is a condensed polymeric tannin consisting of catechin groups, has antioxidant, anti-inflammatory, and antimicrobial activities. In this study, we assessed the effect of persimmon-derived tannin on a murine model of UC established by dextran sulfate sodium-induced colitis in female mice. Dietary supplementation of tannin significantly decreased disease activity and colon inflammation. A hydrolysate of tannin directly suppressed expression of inflammatory genes in macrophages in vitro. In faecal microbiota, the relative abundance of Bacteroides was increased significantly by tannin supplementation. Alpha-diversity indices in colitis-induced mice were significantly higher in the tannin diet group compared with the control diet group. Additionally, expansion of Enterobacteriaceae and Enterococcus, which is associated with disease progression of IBD, was remarkably suppressed in the tannin diet group. These results suggest that persimmon-derived tannin ameliorates colon inflammation in UC through alteration of the microbiota composition and immune response, which may be a promising candidate for IBD therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Z. Darabseh ◽  
Thomas M. Maden-Wilkinson ◽  
George Welbourne ◽  
Rob C. I. Wüst ◽  
Nessar Ahmed ◽  
...  

AbstractCigarette smoking has a negative effect on respiratory and skeletal muscle function and is a risk factor for various chronic diseases. To assess the effects of 14 days of smoking cessation on respiratory and skeletal muscle function, markers of inflammation and oxidative stress in humans. Spirometry, skeletal muscle function, circulating carboxyhaemoglobin levels, advanced glycation end products (AGEs), markers of oxidative stress and serum cytokines were measured in 38 non-smokers, and in 48 cigarette smokers at baseline and after 14 days of smoking cessation. Peak expiratory flow (p = 0.004) and forced expiratory volume in 1 s/forced vital capacity (p = 0.037) were lower in smokers compared to non-smokers but did not change significantly after smoking cessation. Smoking cessation increased skeletal muscle fatigue resistance (p < 0.001). Haemoglobin content, haematocrit, carboxyhaemoglobin, total AGEs, malondialdehyde, TNF-α, IL-2, IL-4, IL-6 and IL-10 (p < 0.05) levels were higher, and total antioxidant status (TAS), IL-12p70 and eosinophil numbers were lower (p < 0.05) in smokers. IL-4, IL-6, IL-10 and IL-12p70 had returned towards levels seen in non-smokers after 14 days smoking cessation (p < 0.05), and IL-2 and TNF-α showed a similar pattern but had not yet fully returned to levels seen in non-smokers. Haemoglobin, haematocrit, eosinophil count, AGEs, MDA and TAS did not significantly change with smoking cessation. Two weeks of smoking cessation was accompanied with an improved muscle fatigue resistance and a reduction in low-grade systemic inflammation in smokers.


2021 ◽  
Vol 14 (4) ◽  
pp. 320
Author(s):  
Chia-Chen Hsu ◽  
Yingxiao Li ◽  
Chao-Tien Hsu ◽  
Juei-Tang Cheng ◽  
Mang Hung Lin ◽  
...  

Diet-induced obesity (DIO) is considered the main risk factor for cardiovascular diseases. Increases in the plasma levels of tumor necrosis factor alpha (TNF-α) is associated with DIO. Etanercept, a TNF-α inhibitor, has been shown to alleviate cardiac hypertrophy. To investigate the effect of etanercept on cardiac fibrosis in DIO model, rats on high fat diet (HFD) were subdivided into two groups: the etanercept group and vehicle group. Cardiac injury was identified by classic methods, while fibrosis was characterized by histological analysis of the hearts. Etanercept treatment at 0.8 mg/kg/week twice weekly by subcutaneous injection effectively alleviates the cardiac fibrosis in HFD-fed rats. STAT3 activation seems to be induced in parallel with fibrosis-related gene expression in the hearts of HFD-fed rats. Decreased STAT3 activation plays a role in the etanercept-treated animals. Moreover, fibrosis-related genes are activated by palmitate in parallel with STAT3 activation in H9c2 cells. Etanercept may inhibit the effects of palmitate, but it is less effective than a direct inhibitor of STAT3. Direct inhibition of STAT3 activation by etanercept seems unlikely. Etanercept has the ability to ameliorate cardiac fibrosis through reduction of STAT3 activation after the inhibition of TNF-α and/or its receptor.


Sign in / Sign up

Export Citation Format

Share Document