scholarly journals Lactobacillus reuteristrains reduce incidence and severity of experimental necrotizing enterocolitis via modulation of TLR4 and NF-κB signaling in the intestine

2012 ◽  
Vol 302 (6) ◽  
pp. G608-G617 ◽  
Author(s):  
Yuying Liu ◽  
Nicole Y. Fatheree ◽  
Nisha Mangalat ◽  
Jon Marc Rhoads

Necrotizing enterocolitis (NEC) is the leading gastrointestinal cause of mortality and morbidity in the premature infant. Premature infants have a delay in intestinal colonization by commensal bacteria and colonization with potentially pathogenic organisms. Lactobacillus reuteri is a probiotic that inhibits enteric infections, modulates the immune system, and may be beneficial to prevent NEC. In previous studies, L. reuteri strains DSM 17938 and ATCC PTA 4659 differentially modulated inflammation in vitro; however, the strains had equivalent anti-inflammatory responses in LPS feeding-induced ileitis in neonatal rats in vivo. The impact of these two strains in the prevention of NEC has not been previously investigated. NEC was induced in newborn rats by orogastric formula feeding and exposure to hypoxia. L. reuteri was added to the formula to prevent NEC. NEC score, Toll-like receptor (TLR)-signaling genes, phospho-IκB activity, and cytokine levels in the intestine were examined. Both strains significantly increased survival rate and decreased the incidence and severity of NEC, with optimal effects from DSM 17938. In response to probiotic, mRNA expression of IL-6, TNF-α, TLR4, and NF-κB was significantly downregulated, while mRNA levels of anti-inflammatory cytokine IL-10 were significantly upregulated. In parallel, L. reuteri treatment led to decrease intestinal protein levels of TLR4 and cytokine levels of TNF-α and IL-1β in newborn rats with NEC. Both strains significantly inhibited not only intestinal LPS-induced phospho-IκB activity in an ex vivo study but also decreased the levels of phospho-IκB in the intestines of NEC rat model. Cow milk formula feeding produced a similar but milder proinflammatory profile in the intestine that was also ameliorated by 17938. Our studies demonstrate that each of the two L. reuteri strains has potential therapeutic value in our NEC model and in enteritis associated with cow milk feeding. These results support the concept that L. reuteri may represent a valuable treatment to prevent NEC.

2009 ◽  
Vol 297 (4) ◽  
pp. F961-F970 ◽  
Author(s):  
Richard A. Zager ◽  
Ali C. M. Johnson ◽  
Steve Lund

Inflammatory cytokines are evoked by acute kidney injury (AKI) and may contribute to evolving renal disease. However, the impact of AKI-induced uremia on proinflammatory (e.g., TNF-α, MCP-1, TGF-β1) and anti-inflammatory (e.g., IL-10) cytokine gene expression remains unknown. This study was undertaken to gain some initial insights into this issue. CD-1 mice were subjected to left renal ischemia-reperfusion (I/R) in the absence or presence of uremia (± right ureteral transection). TNF-α, MCP-1, TGF-β1, and IL-10 mRNAs, cytokine protein levels, and RNA polymerase II (Pol II) recruitment to these genes were assessed. Renal cytokine mRNA levels were also contrasted with unilateral vs. bilateral renal parenchymal damage (I/R or ureteral obstruction). Potential effects of uremia on cytokine mRNAs in the absence of parenchymal renal damage [bilateral ureteral transection (BUTx)] were sought. Finally, the impact of simulated in vitro uremia (HK-2 tubular cells exposed to peritoneal dialysate from uremic vs. normal mice) on cytokine mRNA and microRNA profiles was assessed. Uremia blunted TNF-α, MCP-1, and TGF-β1 mRNA increases in all three in vivo parenchymal acute renal failure models. These results were paralleled by reductions in cytokine protein levels and Pol II recruitment to their respective genes. Conversely, uremia increased IL-10 mRNA, both in the presence and absence (BUTx) of parenchymal renal damage. The uremic milieu also suppressed HK-2 cell proinflammatory cytokine mRNA levels and altered the expression of least 69 microRNAs ( P < 0.0001). We conclude that both pro- and anti-inflammatory cytokine gene expressions are influenced by uremia, with a potential predilection toward an anti-inflammatory state. Changes in gene transcription (as reflected by Pol II recruitment), and possible posttranscriptional modifications (known to be induced by microRNAs), are likely involved.


2020 ◽  
Vol 21 (22) ◽  
pp. 8826
Author(s):  
Elena Guillén-Gómez ◽  
Irene Silva ◽  
Núria Serra ◽  
Francisco Caballero ◽  
Jesús Leal ◽  
...  

Pretransplant graft inflammation could be involved in the worse prognosis of deceased donor (DD) kidney transplants. A2A adenosine receptor (A2AR) can stimulate anti-inflammatory M2 macrophages, leading to fibrosis if injury and inflammation persist. Pre-implantation biopsies of kidney donors (47 DD and 21 living donors (LD)) were used to analyze expression levels and activated intracellular pathways related to inflammatory and pro-fibrotic processes. A2AR expression and PKA pathway were enhanced in DD kidneys. A2AR gene expression correlated with TGF-β1 and other profibrotic markers, as well as CD163, C/EBPβ, and Col1A1, which are highly expressed in DD kidneys. TNF-α mRNA levels correlated with profibrotic and anti-inflammatory factors such as TGF-β1 and A2AR. Experiments with THP-1 cells point to the involvement of the TNF-α/NF-κB pathway in the up-regulation of A2AR, which induces the M2 phenotype increasing CD163 and TGF-β1 expression. In DD kidneys, the TNF-α/NF-κB pathway could be involved in the increase of A2AR expression, which would activate the PKA–CREB axis, inducing the macrophage M2 phenotype, TGF-β1 production, and ultimately, fibrosis. Thus, in inflamed DD kidneys, an increase in A2AR expression is associated with the onset of fibrosis, which may contribute to graft dysfunction and prognostic differences between DD and LD transplants.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1098
Author(s):  
Tania Carta ◽  
Elisabetta Razzuoli ◽  
Floriana Fruscione ◽  
Susanna Zinellu ◽  
Dionigia Meloni ◽  
...  

Macrophages are phagocytic cells involved in maintaining tissue homeostasis and defense against pathogens. Macrophages may be polarized into different functionally specialized subsets. M2c macrophages arise following stimulation with IL-10 or TGF-β and mediate anti-inflammatory and tissue repair functions. M2c macrophages remain poorly characterized in the pig, thus we investigated the impact of these regulatory cytokines on porcine monocyte-derived macrophages (moMΦ). The phenotype and functionality of these cells was characterized though confocal microscopy, flow cytometry, ELISA, and RT-qPCR. Both cytokines induced CD14 and MHC II DR down-regulation and reduced IL-6, TNF-α, and CD14 expression, suggestive of an anti-inflammatory phenotype. Interestingly, neither IL-10 or TGF-β were able to trigger IL-10 induction or release by moMΦ. Differences between these cytokines were observed: stimulation with IL-10, but not TGF-β, induced up-regulation of both CD16 and CD163 on moMΦ. In addition, IL-10 down-regulated expression of IL-1β and IL-12p40 4h post-stimulation and induced a stronger impairment of moMΦ ability to respond to either TLR2 or TLR4 agonists. Overall, our results provide an overview of porcine macrophage polarization by two immunosuppressive cytokines, revealing differences between IL-10 and TGF-β, and reporting some peculiarity of swine, which should be considered in translational studies.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Krithika Selvarajan ◽  
Chandrakala Aluganti Narasimhulu ◽  
Reena Bapputty ◽  
Sampath Parthasarathy

Background Dietary intervention to prevent atherosclerosis and inflammation has been a major focus in recent years. Sesame oil (SO), widely used in many Asian countries, has been reported to help reduce high blood pressure. It has also been shown to reduce plasma cholesterol, low density lipoprotein (LDL) cholesterol and triglyceride levels. We previously reported that SO was effective in inhibiting atherosclerosis in LDL-receptor negative mice. In this study we tested whether the aqueous, non-lipid components of SO might have anti-inflammatory effects. Methods Sesame oil was extracted using ethanol:water mixture, lyophilized and reconstituted in water. To study anti-inflammatory effect, RAW 264.7 cells (macrophage cell line) were treated with the aqueous extract in the presence or absence of lipopolysaccharide (LPS) for 24 hours. RNA was extracted using Trizol. mRNA expression of inflammatory cytokines such as IL-1α, IL-6 and TNF-α were analyzed by real time PCR. Protein expression was determined by western blot analysis. To identify the mechanism of action, we performed luciferase assay using HepG2-LXR reporter cell lines. Results LPS induced the expression of IL-1α, IL-6 and TNF-α mRNA levels in RAW cells. The extract alone did not significantly affect the expressions of inflammatory cytokine genes. However, when treated together with LPS, sesame oil aqueous extract inhibited the mRNA levels of these cytokines significantly. Treatment with LPS together with SO extract also decreased the protein expression of these cytokines. The SO extract induced LXR expression as identified by the luciferase assay system in HepG2-LXR reporter cells. Conclusion These findings suggest that the aqueous portion of SO might be effective in preventing inflammation. Furthermore, the activation of LXR might suggest additional effects on lipid metabolism. Identifying the specific components present in the aqueous extract will be instrumental in developing treatment modalities for atherosclerosis and other inflammatory conditions.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 577
Author(s):  
Vijayasree V. Giridharan ◽  
Giselli Scaini ◽  
Gabriela D. Colpo ◽  
Tejaswini Doifode ◽  
Omar F. Pinjari ◽  
...  

Schizophrenia is a complex psychiatric disorder that exhibits an interconnection between the immune system and the brain. Experimental and clinical studies have suggested the presence of neuroinflammation in schizophrenia. In the present study, the effect of antipsychotic drugs, including clozapine, risperidone, and haloperidol (10, 20 and 20 μM, respectively), on the production of IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-17, IL-18, INF-γ, and TNF-α was investigated in the unstimulated and polyriboinosinic-polyribocytidilic acid [poly (I:C)]-stimulated primary microglial cell cultures. In the unstimulated cultures, clozapine, risperidone, and haloperidol did not influence the cytokine levels. Nevertheless, in cell cultures under strong inflammatory activation by poly (I:C), clozapine reduced the levels of IL-1α, IL-1β, IL-2, and IL-17. Risperidone and haloperidol both reduced the levels of IL-1α, IL-1β, IL-2, and IL-17, and increased the levels of IL-6, IL-10, INF-γ, and TNF-α. Based on the results that were obtained with the antipsychotic drugs and observing that clozapine presented with a more significant anti-inflammatory effect, clozapine was selected for the subsequent experiments. We compared the profile of cytokine suppression obtained with the use of NLRP3 inflammasome inhibitor, CRID3 to that obtained with clozapine, to test our hypothesis that clozapine inhibits the NLRP3 inflammasome. Clozapine and CRID3 both reduced the IL-1α, IL-1β, IL-2, and IL-17 levels. Clozapine reduced the level of poly (I:C)-activated NLRP3 expression by 57%, which was higher than the reduction thay was seen with CRID3 treatment (45%). These results suggest that clozapine might exhibit anti-inflammatory effects by inhibiting NLRP3 inflammasome and this activity is not typical with the use of other antipsychotic drugs under the conditions of strong microglial activation.


Author(s):  
Maciej Kwiatek ◽  
Tomasz Gęca ◽  
Anna Kwaśniewska

The advantage in response of Th2 over Th1 is observed in normal pregnancy in peripheral blood. A disturbance of this balance can lead to symptoms of miscarriage and pregnancy loss. The aim of this study was to evaluate the pro- and anti-inflammatory cytokines in sera of women who were diagnosed with missed miscarriage in the first trimester and to compare this systemic immune response to the response in women with normal pregnancy. The study group consisted of 61 patients diagnosed with missed miscarriage. In total, 19 healthy women with uncomplicated first trimester created the control group. Cytokines were determined in the maternal serum by ELISA. The analysis included INF-γ, TNF-α, Il-1β, Il-4, Il-5, Il-6, Il-9, Il-10, Il-13 and TGF-β1. Th1 cytokine levels in the study group reached slightly higher values for INF-γ, Il-1β and slightly lower for IL-6 and TNF-α. In turn, Th2 cytokine levels in the study group were slightly higher (Il-9, Il-13), significantly higher (Il4, p = 0.015; Il-5, p = 0.0003) or showed no differences with the control group (Il-10). Slightly lower concentration involved only TGF-β1. Analysis of the correlation between levels of pro- and anti-inflammatory cytokines resulted in some discrepancies, without showing predominance of a specific immune response. The results did not confirm that women with missed miscarriage had an advantage in any type of immune response in comparison to women with normal pregnancy.


2016 ◽  
Vol 38 (3) ◽  
pp. 1245-1256 ◽  
Author(s):  
Shuo Chen ◽  
Lei Zhang ◽  
Ruonan Xu ◽  
Yunfan Ti ◽  
Yunlong Zhao ◽  
...  

Background/Aims: The bradykinin B2 receptor (BDKRB2) +9/-9 gene polymorphisms have been shown to be associated with the susceptibility and severity of osteoarthritis (OA); however, the underlying mechanisms are unclear. In this study, we investigated the correlation between the BDKRB2 +9/-9 polymorphisms and pro-inflammatory cytokine levels in OA and the molecular mechanisms involved. Methods: A total of 156 patients with primary knee OA and 121 healthy controls were enrolled. The BDKRB2 +9/-9 polymorphisms were genotyped. The tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8 levels were determined using Enzyme-linked immunosorbent assay (ELISA). The toll-like receptor (TLR)-2 and TLR-4 mRNA levels were determined by quantitative real-time PCR. The basal and bradykinin-stimulated pro-inflammatory cytokine secretion in human OA synoviocytes and the involvement of TLR-2 and mitogen-activated protein kinases (MAPKs) were investigated. Results: The presence of -9 bp genotype is associated with higher TNF-α, IL-6, and IL-8 levels and higher TLR-2 expression in OA patients. The basal and bradykinin-induced TLR-2 expressions in human OA synoviocytes were significantly reduced by specific inhibitors of p38, JNK1/2, and ERK1/2. Both the B2 receptor antagonist MEN16132 and TLR-2 silencing inhibited IL-6 and IL-8 secretion in human OA synoviocytes. Conclusion: The data suggested that the BDKRB2 +9/-9 polymorphisms influence pro-inflammatory cytokine levels in knee osteoarthritis by altering TLR-2 expression.


2015 ◽  
Vol 93 (4) ◽  
pp. 253-260 ◽  
Author(s):  
Yu Zhang ◽  
Ruhong Yan ◽  
Yae Hu

Oxymatrine (OMT) is the quinolizidine alkaloid extracted from the Chinese herb Sophora flavescens Ait. that has many pharmacological effects and is used for the treatment of some inflammatory diseases. In this study, RAW264.7 cells and THP-1 differentiated macrophages were pretreated with various concentrations of OMT at 2 h prior to treatment with lipopolysaccharide (LPS) (1.0 μg/mL) for different durations. We detected the anti-inflammatory effect of OMT in LPS-stimulated macrophages and investigated the molecular mechanism. We showed that OMT pretreatment significantly inhibited the LPS-induced secretion of nitric oxide (NO), interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) in supernatant, attenuated the mRNA levels of inducible nitric oxide synthase (iNOS), IL-1β, TNF-α, and Toll-like receptor 4 (TLR4), increased TLR4 and phosphorylation of inhibitor of kappa B-alpha (p-IBα) in cytosol, and decreased the nuclear level of nuclear factor-κB (NF-κB) p65 in macrophages. In conclusion, OMT exerts anti-inflammatory properties in LPS-stimulated macrophages by down-regulating the TLR4/NF-κB pathway.


2018 ◽  
Vol 315 (2) ◽  
pp. G231-G240 ◽  
Author(s):  
Thomas K. Hoang ◽  
Baokun He ◽  
Ting Wang ◽  
Dat Q. Tran ◽  
J. Marc Rhoads ◽  
...  

Lactobacillus reuteri DSM 17938 (LR 17938) has been shown to reduce the incidence and severity of necrotizing enterocolitis (NEC). It is unclear if preventing NEC by LR 17938 is mediated by Toll-like receptor 2 (TLR2), which is known to mediate proinflammatory responses to bacterial cell wall components. NEC was induced in newborn TLR2−/− or wild-type (WT) mice by the combination of gavage-feeding cow milk-based formula and exposure to hypoxia and cold stress. Treatment groups were administered formula supplemented with LR 17938 or placebo (deMan-Rogosa-Sharpe media). We observed that LR 17938 significantly reduced the incidence of NEC and reduced the percentage of activated effector CD4+T cells, while increasing Foxp3+ regulatory T cells in the intestinal mucosa of WT mice with NEC, but not in TLR2−/− mice. Dendritic cell (DC) activation by LR 17938 was mediated by TLR2. The percentage of tolerogenic DC in the intestine of WT mice was increased by LR 17938 treatment during NEC, a finding not observed in TLR2−/− mice. Furthermore, gut levels of proinflammatory cytokines IL-1β and IFN-γ were decreased after treatment with LR 17938 in WT mice but not in TLR2−/− mice. In conclusion, the combined in vivo and in vitro findings suggest that TLR2 receptors are involved in DC recognition and DC-priming of T cells to protect against NEC after oral administration of LR 17938. Our studies further clarify a major mechanism of probiotic LR 17938 action in preventing NEC by showing that neonatal immune modulation of LR 17938 is mediated by a mechanism requiring TLR2. NEW & NOTEWORTHY Lactobacillus reuteri DSM 17938 (LR 17938) has been shown to protect against necrotizing enterocolitis (NEC) in neonates and in neonatal animal models. The role of Toll-like receptor 2 (TLR2) as a sensor for gram-positive probiotics, activating downstream anti-inflammatory responses is unclear. Our current studies examined TLR2 −/− mice subjected to experimental NEC and demonstrated that the anti-inflammatory effects of LR 17938 are mediated via a mechanism requiring TLR2.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4564
Author(s):  
Louis P. Sandjo ◽  
Marcus V. P. dos Santos Nascimento ◽  
Milene de H. Moraes ◽  
Luiza Manaut Rodrigues ◽  
Eduardo M. Dalmarco ◽  
...  

Banana inflorescences are a byproduct of banana cultivation consumed in various regions of Brazil as a non-conventional food. This byproduct represents an alternative food supply that can contribute to the resolution of nutritional problems and hunger. This product is also used in Asia as a traditional remedy for the treatment of various illnesses such as bronchitis and dysentery. However, there is a lack of chemical and pharmacological data to support its consumption as a functional food. Therefore, this work aimed to study the anti-inflammatory action of Musa acuminata blossom by quantifying the cytokine levels (NOx, IL-1β, TNF-α, and IL-6) in peritoneal neutrophils, and to study its antiparasitic activities using the intracellular forms of T. cruzi, L. amazonensis, and L. infantum. This work also aimed to establish the chemical profile of the inflorescence using UPLC-ESI-MS analysis. Flowers and the crude bract extracts were partitioned in dichloromethane and n-butanol to afford four fractions (FDCM, FNBU, BDCM, and BNBU). FDCM showed moderate trypanocidal activity and promising anti-inflammatory properties by inhibiting IL-1β, TNF-α, and IL-6. BDCM significantly inhibited the secretion of TNF-α, while BNBU was active against IL-6 and NOx. LCMS data of these fractions revealed an unprecedented presence of arylpropanoid sucroses alongside flavonoids, triterpenes, benzofurans, stilbenes, and iridoids. The obtained results revealed that banana inflorescences could be used as an anti-inflammatory food ingredient to control inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document