Transplantation of parathyroid tissue in experimental hypoparathyroidism: in vitro and in vivo function of parathyroid tissue microencapsulated with a novel amitogenic alginate

1996 ◽  
Vol 19 (12) ◽  
pp. 735-741 ◽  
Author(s):  
C. Hasse ◽  
G. Klöck ◽  
A. Zielke ◽  
A. Schlosser ◽  
P. Barth ◽  
...  

Microencapsulation of tissues is an alternative to postoperative immunosuppression in transplantation. In 1994 iso-, allo- and xenotransplantation of microencapsulated parathyroid tissue was achieved in vivo. However, continued analysis of the coating substance (an alginate) determined mitogenic properties. Here, we report on the in vitro and in vivo function of parathyroid tissue microencapsulated with a novel amitogenic alginate suitable for use in humans. To assess in vitro function, parathyroid tissue encapsulated with mitogenic and amitogenic alginate was exposed to rising concentrations of calcium. For in vivo experiments, it was isotransplanted into parathyroidectomized rats. PTH release into medium and PTH serum levels as well as calcium levels of recipient rats were analyzed and compared to native (non-microencapsulated) tissue and empty capsules, respectively. In vivo, transplants were excised and subjected to histologic examination six months after trans-plantation. In vitro, parathyroid tissue encapsulated with amitogenic alginate releases approximately half of the PTH of native tissue, not different from tissue encapsulated with the mitogenic alginate. In vivo, the novel alginate preserved parathyroid function similar to that of native tissue over the six month period resulting in complete reversal of hypoparathyroidism. Correspondingly, histologic examination revealed vital parathyroid tissue in intact microcapsules. By establishing in vitro function and successful long-term transplantation, we have documented the principle of microencapsulation of parathyroid tissue to be effective also with the novel amitogenic alginate, which is suitable for clinical use.

2019 ◽  
Vol 37 (2) ◽  
pp. 286-297 ◽  
Author(s):  
Magdalena Kurnik-Łucka ◽  
Gniewomir Latacz ◽  
Adrian Martyniak ◽  
Andrzej Bugajski ◽  
Katarzyna Kieć-Kononowicz ◽  
...  

AbstractSalsolinol (6,7-dihydroxy-1-methyl-1,2,3,4-tetrahydroisoquinoline), widely available in many edibles, is considered to alter the function of dopaminergic neurons in the central nervous system and thus, multiple hypotheses on its either physiological and/or pathophysiological role have emerged. The aim of our work was to revisit its potentially neurotoxic and/or neuroprotective role through a series of both in vitro and in vivo experiments. Salsolinol in the concentration range 10–250 μM did not show any significant release of lactate dehydrogenase from necrotic SH-SY5Y cells and was able in the concentration of 50 and 100 μM to rescue SH-SY5Y cells from death induced by H2O2. Its neuroprotective effect against neurotoxin 6-hydroxydopamine was also determined. Salsolinol was found to decrease significantly the reactive oxygen species level in SH-SY5Y cells treated by 500 μM H2O2 and the caspase activity induced by 300 μM of H2O2 or 100 μM of 6-hydroxydopamine. Serum levels of TNFα and CRP of salsolinol-treated rats were not significantly different from control animals. Both TNFα and CRP served as indirect markers of neurotoxicity and/or neuroprotection. Although the neurotoxic properties of salsolinol have numerously been emphasized, its neuroprotective properties should not be neglected and need greater consideration.


2017 ◽  
Author(s):  
Morgan E. DeSantis ◽  
Michael A. Cianfrocco ◽  
Zaw Min Htet ◽  
Phuoc Tien Tran ◽  
Samara L. Reck-Peterson ◽  
...  

SummaryRegulation is central to the functional versatility of cytoplasmic dynein, a motor involved in intracellular transport, cell division, and neurodevelopment. Previous work established that Lis1, a conserved and ubiquitous regulator of dynein, binds to its motor domain and induces a tight microtubule-binding state in dynein. The work we present here—a combination of biochemistry, single-molecule assays, cryo-electron microscopy and in vivo experiments—led to the surprising discovery that Lis1 has two opposing modes of regulating dynein, being capable of inducing both low and high affinity for the microtubule. We show that these opposing modes depend on the stoichiometry of Lis1 binding to dynein and that this stoichiometry is regulated by the nucleotide state of dynein’s AAA3 domain. We present data on the in vitro and in vivo consequences of abolishing the novel Lis1-induced weak microtubule-binding state in dynein and propose a new model for the regulation of dynein by Lis1.


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 411
Author(s):  
Nader Kameli ◽  
Anya Dragojlovic-Kerkache ◽  
Paul Savelkoul ◽  
Frank R. Stassen

In recent years, plant-derived extracellular vesicles (PDEVs) have gained the interest of many experts in fields such as microbiology and immunology, and research in this field has exponentially increased. These nano-sized particles have provided researchers with a number of interesting findings, making their application in human health and disease very promising. Both in vitro and in vivo experiments have shown that PDEVs can exhibit a multitude of effects, suggesting that these vesicles may have many potential future applications, including therapeutics and nano-delivery of compounds. While the preliminary results are promising, there are still some challenges to face, such as a lack of protocol standardization, as well as knowledge gaps that need to be filled. This review aims to discuss various aspects of PDEV knowledge, including their preliminary findings, challenges, and future uses, giving insight into the complexity of conducting research in this field.


2020 ◽  
Vol 22 (1) ◽  
pp. 233
Author(s):  
Eunkuk Park ◽  
Chang Gun Lee ◽  
Eunguk Lim ◽  
Seokjin Hwang ◽  
Seung Hee Yun ◽  
...  

Osteoporosis is a common disease caused by an imbalance of processes between bone resorption by osteoclasts and bone formation by osteoblasts in postmenopausal women. The roots of Gentiana lutea L. (GL) are reported to have beneficial effects on various human diseases related to liver functions and gastrointestinal motility, as well as on arthritis. Here, we fractionated and isolated bioactive constituent(s) responsible for anti-osteoporotic effects of GL root extract. A single phytochemical compound, loganic acid, was identified as a candidate osteoprotective agent. Its anti-osteoporotic effects were examined in vitro and in vivo. Treatment with loganic acid significantly increased osteoblastic differentiation in preosteoblast MC3T3-E1 cells by promoting alkaline phosphatase activity and increasing mRNA expression levels of bone metabolic markers such as Alpl, Bglap, and Sp7. However, loganic acid inhibited osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. For in vivo experiments, the effect of loganic acid on ovariectomized (OVX) mice was examined for 12 weeks. Loganic acid prevented OVX-induced bone mineral density loss and improved bone structural properties in osteoporotic model mice. These results suggest that loganic acid may be a potential therapeutic candidate for treatment of osteoporosis.


2021 ◽  
Vol 22 (4) ◽  
pp. 1985
Author(s):  
Xiaohe Li ◽  
Ling Ma ◽  
Kai Huang ◽  
Yuli Wei ◽  
Shida Long ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a fatal and age-related pulmonary disease. Nintedanib is a receptor tyrosine kinase inhibitor, and one of the only two listed drugs against IPF. Regorafenib is a novel, orally active, multi-kinase inhibitor that has similar targets to nintedanib and is applied to treat colorectal cancer and gastrointestinal stromal tumors in patients. In this study, we first identified that regorafenib could alleviate bleomycin-induced pulmonary fibrosis in mice. The in vivo experiments indicated that regorafenib suppresses collagen accumulation and myofibroblast activation. Further in vitro mechanism studies showed that regorafenib inhibits the activation and migration of myofibroblasts and extracellular matrix production, mainly through suppressing the transforming growth factor (TGF)-β1/Smad and non-Smad signaling pathways. In vitro studies have also indicated that regorafenib could augment autophagy in myofibroblasts by suppressing TGF-β1/mTOR (mechanistic target of rapamycin) signaling, and could promote apoptosis in myofibroblasts. In conclusion, regorafenib attenuates bleomycin-induced pulmonary fibrosis by suppressing the TGF-β1 signaling pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michele Dei Cas ◽  
Jessica Rizzo ◽  
Mariangela Scavone ◽  
Eti Femia ◽  
Gian Marco Podda ◽  
...  

AbstractLow-dose aspirin (ASA) is used to prevent cardiovascular events. The most commonly used formulation is enteric-coated ASA (EC-ASA) that may be absorbed more slowly and less efficiently in some patients. To uncover these “non-responders” patients, the availability of proper analytical methods is pivotal in order to study the pharmacodynamics, the pharmacokinetics and the metabolic fate of ASA. We validated a high-throughput, isocratic reversed-phase, negative MRM, LC–MS/MS method useful for measuring circulating ASA and salicylic acid (SA) in blood and plasma. ASA-d4 and SA-d4 were used as internal standards. The method was applied to evaluate: (a) the "in vitro" ASA degradation by esterases in whole blood and plasma, as a function of time and concentration; (b) the "in vivo" kinetics of ASA and SA after 7 days of oral administration of EC-ASA or plain-ASA (100 mg) in healthy volunteers (three men and three women, 37–63 years). Parameters of esterases activity were Vmax 6.5 ± 1.9 and Km 147.5 ± 64.4 in plasma, and Vmax 108.1 ± 20.8 and Km 803.2 ± 170.7 in whole blood. After oral administration of the two formulations, tmax varied between 3 and 6 h for EC-ASA and between 0.5 and 1.0 h for plain-ASA. Higher between-subjects variability was seen after EC-ASA, and one subject had a delayed absorption over eight hours. Plasma AUC was 725.5 (89.8–1222) for EC-ASA, and 823.1(624–1196) ng h/mL (median, 25–75% CI) for plain ASA. After the weekly treatment, serum levels of TxB2 were very low (< 10 ng/mL at 24 h from the drug intake) in all the studied subjects, regardless of the formulation or the tmax. This method proved to be suitable for studies on aspirin responsiveness.


2021 ◽  
Vol 11 (10) ◽  
pp. 4451
Author(s):  
Coralia Cotoraci ◽  
Alina Ciceu ◽  
Alciona Sasu ◽  
Eftimie Miutescu ◽  
Anca Hermenean

Multiple myeloma (MM) is one of the most widespread hematological cancers. It is characterized by a clonal proliferation of malignant plasma cells in the bone marrow and by the overproduction of monoclonal proteins. In recent years, the survival rate of patients with multiple myeloma has increased significantly due to the use of transplanted stem cells and of the new therapeutic agents that have significantly increased the survival rate, but it still cannot be completely cured and therefore the development of new therapeutic products is needed. Moreover, many patients have various side effects and face the development of drug resistance to current therapies. The purpose of this review is to highlight the bioactive active compounds (flavonoids) and herbal extracts which target dysregulated signaling pathway in MM, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their healing potential targeting multiple myeloma. Mechanistically, they demonstrated the ability to promote cell cycle blockage and apoptosis or autophagy in cancer cells, as well as inhibition of proliferation/migration/tumor progression, inhibition of angiogenesis in the tumor vascular network. Current research provides valuable new information about the ability of flavonoids to enhance the apoptotic effects of antineoplastic drugs, thus providing viable therapeutic options based on combining conventional and non-conventional therapies in MM therapeutic protocols.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


Sign in / Sign up

Export Citation Format

Share Document