scholarly journals Suggested Research Method for Testing Selected Tribological Properties of Friction Components in Vehicle Braking Systems

2016 ◽  
Vol 10 (3) ◽  
pp. 223-226 ◽  
Author(s):  
Andrzej Borawski

Abstract The braking system is one of the most important systems in any vehicle. Its proper functioning may determine the health and life the people inside the vehicle as well as other road users. Therefore, it is important that the parameters which characterise the functioning of brakes changed as little as possible throughout their lifespan. Multiple instances of heating and cooling of the working components of the brake system as well as the environment they work in may impact their tribological properties. This article describes a method of evaluating the coefficient of friction and the wear speed of abrasive wear of friction working components of brakes. The methodology was developed on the basis of Taguchi’s method of process optimization.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 884
Author(s):  
Andrzej Borawski

Braking systems have a direct impact on the safety of road users. That is why it is crucial that the performance of brakes be dependable and faultless. Unfortunately, the operating conditions of brakes during their operating time are affected by many variables, which results in changes in their tribological properties. This article presents an attempt to develop a methodology for studying how the operating time affects the value of the coefficient of friction and the abrasive wear factor. The Taguchi method of process optimization was used to plan the experiment, which was based on tests using the ball-cratering method. The results clearly show that the degree of wear affects the properties of the friction material used in the production process of brakes.


2020 ◽  
Author(s):  
Alexey Vereschaka ◽  
Sergey Grigoriev ◽  
Vladimir Tabakov ◽  
Mars Migranov ◽  
Nikolay Sitnikov ◽  
...  

The chapter discusses the tribological properties of samples with multilayer composite nanostructured Ti-TiN-(Ti,Cr,Al,Si)N, Zr-ZrN-(Nb,Zr,Cr,Al)N, and Zr-ZrN-(Zr,Al,Si)N coatings, as well as Ti-TiN-(Ti,Al,Cr)N, with different values of the nanolayer period λ. The relationship between tribological parameters, a temperature varying within a range of 20–1000°C, and λ was investigated. The studies have found that the adhesion component of the coefficient of friction (COF) varies nonlinearly with a pronounced extremum depending on temperature. The value of λ has a noticeable influence on the tribological properties of the coatings, and the nature of the mentioned influence depends on temperature. The tests found that for the coatings with all studied values of λ, an increase in temperature first caused an increase and then a decrease in COF.


2003 ◽  
Vol 125 (3) ◽  
pp. 661-669 ◽  
Author(s):  
Masaya Kurokawa ◽  
Yoshitaka Uchiyama ◽  
Tomoaki Iwai ◽  
Susumu Nagai

Tribological properties of several kinds of polyoxymethylene (POM) composites were evaluated for the purpose of developing a polymeric tribomaterial especially suited for mating with aluminum parts having low surface hardness. POM composites containing small amounts of silicon carbide (SiC), POM/SiC; those containing a small amount of calcium octacosanonoate besides SiC, POM/SiC/Ca-OCA; and the one blended with 24 wt % of polytetrafluoroethylene, POM/PTFE(24); were injection-molded into pin specimens and their tribological properties were tested by means of a pin-on-disk type wear apparatus using an aluminum (A5056) mating disk in comparison with a 303 stainless steel (SUS303) disk. Evaluation was focused on observation of the sliding surfaces of the pin specimens and the mating disks by a scanning electron microscope and an optical microscope together with the measurement of surface roughness. In the case of mating against a SUS303 disk having high surface hardness, all pin specimens did not roughen the disk surfaces even after long time of rubbing. Only POM/PTFE(24) composite obviously made a transfer film on the disk surface, while the other composites made an extremely thin one on it. POM/SiC(0.1)/Ca-OCA(1) composite, containing SiC 0.1 wt. % and Ca-OCA 1 wt. %, was found to show the lowest coefficient of friction and the lowest wear rate forming extremely thin transfer film on the mating disk. On the other hand, against an A5056 disk which has lower surface hardness than that of SUS303 disk, unfilled POM and POM composites except POM/SiC(0.1)/Ca-OCA(1) composite roughened the disk surfaces. However, the sliding surface of the A5056 disk rubbed with POM/SiC(0.1)/Ca-OCA(1) composite was significantly smoother and that of the pin specimen was also quite smooth in comparison with other pin specimens. Further, when each POM composite was rubbed against the A5056 disk, formation of transfer film was not obvious on the disk surfaces. For POM/SiC(0.1)/Ca-OCA(1) composite, the wear rate was the lowest of all POM composites, and the coefficient of friction was as low level as 60 percent of that of unfilled POM, but slightly higher than that of POM/PTFE(24) composite. For POM/SiC(0.1)/Ca-OCA(1) composite, the nucleating effect of SiC and Ca-OCA, which accelerated the crystallization of POM during its injection molding to form a matrix containing fine spherulites, must have resulted in increasing the toughness of the matrix and lowering the wear rate. Also, the lubricant effect of Ca-OCA should have lowered the coefficient of friction of the same matrix for rubbing against aluminum mating disk. POM/SiC(0.1)/Ca-OCA(1) composite was concluded as an excellent tribomaterial for mating with aluminum parts.


Author(s):  
Takashi Nogi

Some tribological properties of an ionic liquid were investigated by using a pin-on-disc friction and wear tester. Due to running-in, the coefficient of friction of the ionic liquid decreased with time to a very low value of 0.02 which suggests that the lubrication regime was hydrodynamic at the end of the tests. Anti-wear performance of the ionic liquid was substantially comparable to a paraffin-based oil.


Tribologia ◽  
2019 ◽  
Vol 285 (3) ◽  
pp. 79-87 ◽  
Author(s):  
Jerzy MYALSKI ◽  
Andrzej Posmyk ◽  
Bartosz HEKNER ◽  
Marcin GODZIERZ

Carbon with an amorphous structure was used as a component to modify the tribological properties of engineering plastics. Its construction allows the formation of carbon-based wear products during friction, adhesively bonded to the surface of cooperating machine parts, acting as a solid lubricant. The work compares the tribological properties of two groups of composites with an aluminium alloy matrix in which glassy carbon appeared in the form of particles and an open cell foam fulfilling the role of strengthening the matrix. The use of spatial structures of reinforcement provides, in comparison with the strengthening of particles, homogeneity of carbon distribution in the entire volume of the composite. The tests carried out on a pin-disc tester showed that the use of spatial carbon structures in the composite ensures a greater coefficient of friction stability than when reinforcing with particles, and the coefficient of friction with a small proportion of carbon foams (about 1 wt%) is comparable with the coefficient of friction in the contact with composites containing 5-10% carbon particles in granular form.


2018 ◽  
Vol 20 (17) ◽  
pp. 12027-12036 ◽  
Author(s):  
Sandeep P. Patil ◽  
Sri Harsha Chilakamarri ◽  
Bernd Markert

In the present work, molecular dynamics simulations were carried out to investigate the temperature distribution as well as the fundamental friction characteristics such as the coefficient of friction and wear in a disc-pad braking system.


2020 ◽  
Vol 992 ◽  
pp. 745-750
Author(s):  
A.P. Vasilev ◽  
T.S. Struchkova ◽  
A.G. Alekseev

This paper presents the results from the investigation of effect the carbon fibers with tungsten disulfide on the mechanical and tribological properties of PTFE. Is carried out a comparison of mechanical and tribological properties of polymer composites PTFE-based with carbon fibers and PTFE with complex filler (carbon fibers with tungsten disulfide). It is shown that at a content of 8 wt.% CF+1 wt.% WS2 in PTFE, wear resistance increases significantly while maintaining the tensile strength, relative elongation at break and low coefficient of friction at the level of initial PTFE. The results of X-ray analysis and investigation of SEM supramolecular structure and friction surfaces of PTFE and polymer composites are presented. It is shown that the degree of crystallinity of polymer composites increases in comparison with the initial PTFE. The images of scanning electron microscope reveal that particles of tungsten disulfide concentrating on the friction surface is likely responsible to a reduction in the coefficient of friction and increase the wear resistance of PTFE-based polymer composites with complex fillers.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540021
Author(s):  
Jin Cheol Ha ◽  
Yun-Hae Kim ◽  
Myeong-Hoon Lee ◽  
Kyung-Man Moon ◽  
Se-Ho Park

This experiment has examined the corrosion and tribological properties of basalt fiber reinforced composite materials. There were slight changes of weight after the occurring of corrosion based on time and H 2 SO 4 concentration, but in general, the weight increased. It is assumed that this happens due to the basalt fiber precipitate. Prior to the corrosion, friction-wear behavior showed irregular patterns compared to metallic materials, and when it was compared with the behavior after the corrosion, the coefficient of friction was 2 to 3 times greater. The coefficient of friction of all test specimen ranged from 0.1 to 0.2. Such a result has proven that the basalt fiber, similar to the resin rubber, shows regular patterns regardless of time and H 2 SO 4 concentration because of the space made between resins and reinforced materials.


2010 ◽  
Vol 97-101 ◽  
pp. 1665-1668 ◽  
Author(s):  
Xiao Peng ◽  
Li Zhuan ◽  
Xiong Xiang

Carbon fibre reinforced carbon and silicon carbide dual matrix composites (C/C-SiC) were fabricated by warm compacted in-situ reaction. The C/C-SiC composites microstructure and tribological properties at different brake speeds were investigated. The results indicated that the composites were composed of 58 wt% C, 37 wt% SiC and 5 wt% Si. The density and open porosity were 2.0 g•cm-3 and 10%, respectively. The C/C-SiC brake composites show excellent tribological performance, including a good stability of brake, the coefficient of friction between 0.57 and 0.67, and the wear rate less than 2.02 cm3•MJ-1. These results show that the C/C-SiC brake composites are the promising candidates for advanced brake and clutch systems.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4295
Author(s):  
Hai Wang ◽  
Annan Sun ◽  
Xiaowen Qi ◽  
Yu Dong ◽  
Bingli Fan

The tribological properties of polytetrafluoroethylene (PTFE)/AP (poly(para-phenyleneterephthalamide) (PPTA) pulp) composites under different test conditions (load: 2N, 10N; frequency: 1 Hz, 4 Hz; amplitude: 2 mm, 8 mm) were holistically evaluated. PTFE/AP composites with different AP mass ratios of 3%, 6%, and 12% as a skeleton support material were prepared. The coefficient of friction (COF) and wear rate were determined on a ball-on-disk tribometer. Furthermore, the morphology, element composition, and chemical structure of the transfer membrane were analyzed accordingly. The relationships between load, frequency, amplitude, and tribological properties were further investigated. According to the wear mechanism, AP enables effective improvement in the stiffness and wear resistance, which is also conducive to the formation of transfer films.


Sign in / Sign up

Export Citation Format

Share Document