scholarly journals Підготовка компонентів селективної поверхні трансдюсера імунного біосенсора для індикації Pseudomonas aeruginosa

2017 ◽  
Vol 19 (77) ◽  
pp. 190-193
Author(s):  
O.Ju. Novgorodova ◽  
M.F. Starodub ◽  
V.O. Ushkalov

The article presents the results of research to obtain specific components of the preparation selective biosensor surface for further development the immune biosensor test-system for the express – indication of bacteria Pseudomonas aeruginosa and their detection in biological material and in the environment. Specific antiserum and immunoglobulins to P. aeruginosa were obtained by autors. The resulting surface modification components for activity and specificity of the specific compounents were tested using analytical device imunosensor «Plasmon-6», based on surface plasmon resonance. Biosensors are defined as any measuring device that contains a biological element. It combines the exquisite selectivity of biology with the processing power of modern microelectronics and optoelectronics to offer powerful new analytical tools with major applications in the field of medicine, environmental studies, food and processing industries. These analytical devices are based on the union between biological and physio-chemical components. Biological components include macro-molecules such as antibodies, enzymes, tissue slices which are used to recognize and interact with a specific analyte. Physiochemical components are usually referred to as transducers which converts the interactions into signals; it is later amplified with respect to its concentration of analyte. The transducer may use potentiometric, amperometric, optical, magnetic, colorimetric devices. A target analyte in the external membrane must be able to enter the biosensor. The external membrane of the biosensor must be permeable to the analyte where the biosensor is sensitive to it. The biological element inside the biosensor then interacts with chemical species through a biochemical reaction which in turn produces another chemical product and characterized by change in mechanical, electrical properties. The output signal may be a conventional electrochemical signal depending on the type of transducer it uses. Assessment of P. aeruginosa was carried out using an analytical device - immunosensor, with immobilized specific antibodies on the transducer surface. The antibodies have interact with cell antigens, and the resulting shift value resonance angle recorded. Changing the angle depends on the amount of the immune complexes formed on the transducer surface. From the obtained results on the selective surface of transducer of the imunosensor, we can see, that the diagnostic system works with IgG concentration of 1 mg/ml, working titer of 1:7 in polyclonal antibodies against P. aeruginosa. The resulting antiserum specific immunoglobulins can be used in preparing the selective surface of immune biosensor.

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Ran Yuan ◽  
Dan Ma ◽  
Hongwei Zhang

A test system for water flow in granular gangue mineral was designed to study the flow characteristics by compaction treatment. With the increase of the compaction displacement, the porosity decreases and void in granular gangue becomes less. The main reason causing initial porosity decrease is that the void of larger size is filled with small particles. Permeability tends to decrease and non-Darcy flow factor increases under the compaction treatment. The change trend of flow characteristics shows twists and turns, which indicate that flow characteristics of granular gangue mineral are related to compaction level, grain size distribution, crushing, and fracture structure. During compaction, larger particles are crushed, which in turn causes the weight of smaller particles to increase, and water flow induces fine particles to migrate (weight loss); meanwhile, a sample with more weight of size (0–2.5 mm) has a higher amount of weight loss. Water seepage will cause the decrease of some chemical components, where SiO2 decreased the highest in these components; the components decreased are more likely locked at fragments rather than the defect of the minerals. The variation of the chemical components has an opposite trend when compared with permeability.


2017 ◽  
Vol 7 ◽  
pp. 184798041668716 ◽  
Author(s):  
Yanshuang Chen ◽  
Qin Chen ◽  
Hong Mao ◽  
Ting Zhang ◽  
Xiaoyan Qiu ◽  
...  

Using an FeOOH/Mg(OH)2 precursor, maghemite-based magnetic nanoparticles can be prepared by a chemically induced transition in an Iron(II) chloride (FeCl2) treating solution. FeCl2 solutions of various concentrations were used to investigate the dependence of sample components and magnetization on the treating solution. The bulk chemical species, crystal structures, surface chemical components, morphologies, and specific magnetizations of the samples were characterized. When the concentration of FeCl2 solution was in a moderate range of 0.060–0.250 M, maghemite nanoparticles coated by hydromolysite, that is, maghemite/hydromolysite nanoparticles, could be prepared. At lower concentrations, below 0.030 M, the samples contained maghemite/hydromolysite and magnesium oxide nanoparticles, and at higher concentrations, up to 1.000 M, the samples contained maghemite/hydromolysite and hydromolysite nanoparticles. The molar and mass percentages of each phase were estimated for each sample. The apparent magnetization behavior of the samples, which exhibited a non-monotonic variation with increasing concentration of FeCl2 solution, is explained from the variation of mass percentage of the maghemite phase with concentration.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Lobna El-Hosseiny ◽  
Moustafa El-Shenawy ◽  
Medhat Haroun ◽  
Fadhil Abdullah

Gas chromatography/mass spectroscopy analysis was performed to identify the chemical components of three extracted essential oils including thyme, marjoram, and sage. The antibacterial activity of the extracted essential oils against Pseudomonas aeruginosa (ATCC 9027) was investigated using disc diffusion assay, either alone or in combination with standard antibiotics (piperacillin, cefepime, meropenem, gentamicin, and norfloxacin). Results showed that the studied oils exhibited a variety of activities against the tested bacterium. Thyme oil was the most active followed by marjoram oil, whereas sage displayed no activity towards the tested organism. Thyme oil enhanced the antibacterial activity of cell wall targeting antibiotics (piperacillin, cefepime, and meropenem) by more than twofold. Marjoram oil potentiated the activity of all the tested antibiotics except norfloxacin. Sage, despite its inactivity against pseudomonas, synergistically enhanced the activity of piperacillin, meropenem, and gentamicin. Thyme essential oil, containing thymol as a major component (33.6%), exhibited higher activity alone or in combination with antibiotics than marjoram which contained alcoholic terpenes or sage essential oil that contained 1,8-cineole as its major component (29%). The investigated oils, as natural bioactive agents, may be used to enhance the activity of antibiotics towards pseudomonas.


2018 ◽  
Author(s):  
Zirui Liu ◽  
Wenkang Gao ◽  
Yangchun Yu ◽  
Bo Hu ◽  
Jinyuan Xin ◽  
...  

Abstract. The Campaign on atmospheric Aerosol REsearch network of China (CARE-China) is a long-term project for the study of the spatiotemporal distributions of physical aerosol characteristics as well as the chemical components and optical properties of aerosols over China. This study presents the first long-term datasets from this project, including three years of observations of online PM2.5 mass concentrations (2012–2014) and one year of observations of PM2.5 compositions (2012–2013) from the CARE-China network. The average PM2.5 concentrations at 20 urban sites is 73.2 μg/m3 (16.8–126.9 μg/m3), which was three times higher than the average value from the 12 background sites (11.2–46.5 μg/m3). The PM2.5 concentrations are generally higher in east-central China than in the other parts of the country due to their relative large particulate matter (PM) emissions and the unfavorable meteorological conditions for pollution dispersion. A distinct seasonal variability of the PM2.5 is observed, with highs in the winter and lows during the summer at urban sites. Inconsistent seasonal trends were observed at the background sites. Bimodal and unimodal diurnal variation patterns were identified at both urban and background sites. The chemical compositions of PM2.5 at six paired urban and background sites located within the most polluted urban agglomerations and cleanest regions of China were analyzed. The major PM2.5 constituents across all the urban sites are organic matter (OM, 26.0 %), SO42− (17.7 %), mineral dust (11.8 %), NO3− (9.8 %), NH4+ (6.6 %), elemental carbon (EC) (6.0 %), Cl− (1.2 %) at 45 % RH and residual matter (20.7 %). Similar chemical compositions of PM2.5 were observed at background sites but were associated with higher fractions of OM (33.2 %) and lower fractions of NO3− (8.6 %) and EC (4.1 %). Significant variations of the chemical species were observed among the sites. At the urban sites, the OM ranged from 12.6 μg/m3 (Lhasa) to 23.3 μg/m3 (Shenyang), the SO42− ranged from 0.8 μg/m3 (Lhasa) to 19.7 μg/m3 (Chongqing), the NO3− ranged from 0.5 μg/m3 (Lhasa) to 11.9 μg/m3 (Shanghai) and the EC ranged from 1.4 μg/m3 (Lhasa) to 7.1 μg/m3 (Guangzhou). The PM2.5 chemical species at the background sites exhibited larger spatial heterogeneities than those at urban sites, suggesting the different contributions from regional anthropogenic or natural emissions and from the long-range transport to background areas. Notable seasonal variations of PM2.5 polluted days were observed, especially for the megacities in east-central China, resulting in frequent heavy pollution episodes occurring during the winter. The evolution of the PM2.5 chemical compositions on polluted days was similar for the urban and nearby background sites, suggesting the significant regional pollution characteristics of the most polluted areas of China. However, the chemical species dominating the evolutions of the heavily polluted events were different in these areas, indicating that unique mitigation measures should be developed for different regions of China. This analysis reveals the spatial and seasonal variabilities of the urban and background aerosol concentrations on a national scale and provides insights into their sources, processes, and lifetimes.


2010 ◽  
Vol 98 (6) ◽  
Author(s):  
R. Juncosa ◽  
I. Font ◽  
J. Delgado

AbstractRadioactive decay is an important subject to take into account when studying the thermo-hydro-dynamic behavior of the buffer clay material used in the containment of radioactive waste. The modern concepts for the multibarrier design of a repository of high level waste in deep geologic formations consider that once canisters have failed, the buffer clay material must ensure the retention and/or delay of radionuclides within the time framework given in the assessment studies. Within the clay buffer, different chemical species are retarded/fixed according to several physicochemical processes (ion exchange, surface complexation, precipitation, matrix diffusion, ...) but typical approaches do not consider the eventuality that radioactive species change their chemical nature (The radioactive decay of an element takes place independently of the phase (aqueous, solid or gaseous) to which it belongs. This means that, in terms of radionuclide fixation, some geochemical processes will be effective scavengers (for instance mineral precipitation of crystal growth) while others will not (for instance ion exchange and/or sorption).In this contribution we present a reactive radioactive decay model of any number of chemical components including those that belong to decay series. The model, which is named FLOW-DECAY, also takes into account flow and isotopic migration and it has been applied considering a hypothetical model scenario provided by the project ENRESA 2000 and direct comparison with the results generated by the probabilistic code GoldSim. Results indicate that FLOW-DECAY may simulate the decay processes in a similar way that GoldSim, being the differences related to factors associated to code architecture.


2007 ◽  
Vol 61 (7) ◽  
pp. 734-746 ◽  
Author(s):  
Wee Chew ◽  
Effendi Widjaja ◽  
Marc Garland

Although infrared spectroscopy is a very common analytical tool in the chemical sciences, quantitative infrared spectroscopic studies of multi-component solutions (particularly on-line or in-line studies) have been hampered by the lack of a concise and robust numerical approach. Using an inert chemical species as internal standard, the usual absorbance ratio analysis is generalized into a mathematical form that converts typical absorbance measurement A into its renormalized absorbance Arenorm, with the latter directly relating to the absolute moles rather than the concentration of the constituents. The renormalized absorbance has a number of very important properties, including (1) insensitivity to path length changes due to variations in temperature or pressure of the Fourier transform infrared (FT-IR) cell and (2) insensitivity to solution volume changes arising from reaction, chemical transport, or thermodynamic conditions. The methodology is first applied to a simple model test system to demonstrate its utility for multivariate calibration, and then re-applied to a real problem: the calibration of the rhodium carbonyl hydride HRh(CO)4, a long-sought species in organometallic chemistry and homogeneous catalysis (Angewandte Chemie Int. Ed., vol. 41, 3786 (2002)). The utility of the developed methodology for multivariate calibration and exploratory chemometric studies is demonstrated. Emphasis is placed on providing a numerical recipe for the practicing analytical chemist.


2017 ◽  
Vol 13 (5) ◽  
pp. 533-544 ◽  
Author(s):  
Juliana D'Andrilli ◽  
Christine M. Foreman ◽  
Michael Sigl ◽  
John C. Priscu ◽  
Joseph R. McConnell

Abstract. Englacial ice contains a significant reservoir of organic material (OM), preserving a chronological record of materials from Earth's past. Here, we investigate if OM composition surveys in ice core research can provide paleoecological information on the dynamic nature of our Earth through time. Temporal trends in OM composition from the early Holocene extending back to the Last Glacial Maximum (LGM) of the West Antarctic Ice Sheet Divide (WD) ice core were measured by fluorescence spectroscopy. Multivariate parallel factor (PARAFAC) analysis is widely used to isolate the chemical components that best describe the observed variation across three-dimensional fluorescence spectroscopy (excitation–emission matrices; EEMs) assays. Fluorescent OM markers identified by PARAFAC modeling of the EEMs from the LGM (27.0–18.0 kyr BP; before present 1950) through the last deglaciation (LD; 18.0–11.5 kyr BP), to the mid-Holocene (11.5–6.0 kyr BP) provided evidence of different types of fluorescent OM composition and origin in the WD ice core over 21.0 kyr. Low excitation–emission wavelength fluorescent PARAFAC component one (C1), associated with chemical species similar to simple lignin phenols was the greatest contributor throughout the ice core, suggesting a strong signature of terrestrial OM in all climate periods. The component two (C2) OM marker, encompassed distinct variability in the ice core describing chemical species similar to tannin- and phenylalanine-like material. Component three (C3), associated with humic-like terrestrial material further resistant to biodegradation, was only characteristic of the Holocene, suggesting that more complex organic polymers such as lignins or tannins may be an ecological marker of warmer climates. We suggest that fluorescent OM markers observed during the LGM were the result of greater continental dust loading of lignin precursor (monolignol) material in a drier climate, with lower marine influences when sea ice extent was higher and continents had more expansive tundra cover. As the climate warmed, the record of OM markers in the WD ice core changed, reflecting shifts in carbon productivity as a result of global ecosystem response.


2014 ◽  
Vol 70 (a1) ◽  
pp. C947-C947
Author(s):  
Andrew Beale

Industrial catalysis utilizes mainly μm to mm-sized catalyst particles in catalytic reactors instead of powders since this minimizes problems associated with for example back pressure and clogging. In recent times, efforts have been made to study and characterize these `real life' single particles so as to determine the nature of chemical species present in 2D and 3D during various stages of the catalyst lifetime such as preparation, reaction and deactivation. Traditionally this sort of analysis is performed on ex situ samples using invasive approaches which often interfere with the chemical process under study and the subsequent conclusions that can be drawn. As a result there has been a recent move towards studying these processes non-invasively and where possible, dynamically in order to understand in detail how the chemistry evolves within catalyst particles and how this and the spatial distribution of the various chemical components influence catalytic behaviour. For this purpose we have developed synchrotron-based X-ray Computed Tomography imaging techniques for studying catalytic solids in real time in order to examine how the active phases form, how they behave under reaction conditions and why they eventually deactivate.


Author(s):  
Vifin Putri Rahmawati ◽  
Chylen Setiyo Rini

Plants have many chemical components. The use of natural ingredients as an alternative treatment in dealing with diseases, especially acne. One of them is mango (Mangifera indica L.) varieties of apples obtained at the Larangan Main Market in Sidoarjo. This study aims to determine the potential of infusion and maceration of mango skin varieties in inhibiting Pseudomonas aeruginosa and Propionibactrium acne at various concentrations. This antibacterial potential test was carried out using the diffusion method of the wells. The antibacterial potential is characterized by the formation of a clear zone around the well called the inhibition zone. This study uses 10 concentrations namely 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% and Clindamycin as positive control and aquades as negative control. Based on the results of the Two Way ANOVA test data obtained were not normally distributed, therefore a comparison test was performed using the Kruskal-Wallis test with a sign value (α <0.05). This showed that there were significant differences in the use of various concentrations. The maceration extract concentration of 100% is the best concentration to form a zone of inhibition against P. aeruginosa  of 17.9 mm and P. acne bacteria of 13.2 mm. The results of the infusion extract concentration did not form inhibitory zones in both of P. aeruginosa and P. acnes.


Author(s):  
Zakaryae Ezzouine ◽  
Abdelrhani Nakheli

<p>This article develops also a measure and prototype to allow the acquisition of real time data for display, analysis, control and storage with a proposed test program for determining the model parameters. The aim is to be able to measure, and apply moment to a specimen, and collect data from the resulting deformation in the material. At the same time, the reliability of this test system has been proved by precision analysis and data processing for a simple test validation (metal wire). The force-deformation curves of solids materials in this tensile test are measured accurately in real time, to obtain the values of solid materials mechanical property parameters, The minimal change in length of the test Specimen that can be resolved by this system is 1µm, which yields the sensitivity comprised between 10-4µm and 10-5 µm. Based on the experience that compressive tensile test have the smallest statistical scatter and that they are simplest to carry out. The measuring device can improve the measuring efficiency and accuracy distinctly while has advantages of simple configuration, low cost and high stability.</p>


Sign in / Sign up

Export Citation Format

Share Document