Physiological and Biochemical Properties of Cotton in Response to Copper Stress

2020 ◽  
Author(s):  
Hao Zhou ◽  
Ke-Hai Zhou ◽  
Gang Zhao ◽  
Pei-Pei Wang ◽  
Dai-Gang Yang ◽  
...  

Abstract Backgroundcopper (Cu) is an essential micronutrient, required for plant growth and development. However, high concentrations of Cu can be extremely toxic to plant. This study investigate the tolerance mechanism of cotton under copper stress and its potential for soil pollution improvement.ResultsThe hybrid cotton variety (Zhongmian 63) and its two parent lines were selected as materials. Cotton seedling were treated with different Cu concentrations (0, 0.2, 50, 100, 200 μM) for 10 days in hydroponic condition. The results showed that the stem height, root length, and leaf area of cotton seedlings appear to have a down trend with the increase of Cu concentration. Increasing Cu concentration promoted Cu accumulation in roots, stems, and leaves of all the three cotton genotypes, however, the roots region was the main Cu storage organ, followed by leaves and stems regions. Compared with the parent lines, the roots of Zhongmian 63 are more capable of enriching Cu and have the least amount of Cu transported to the shoots. Therefore, the toxicity of Cu to cotton seedling is effectively alleviated. Cu-caused oxidative stress to cotton leaves was evident by over accumulation of H2O2 and MDA. POD activity and soluble sugar content increased firstly and then decreased compared with the control group. GSH content increased and photosynthetic pigment content decreased with increasing copper concentration in nutrient solution. ConclusionOur results suggest that the hybrid cotton variety Zhongmian 63 performed well under Cu stress. This lays the theoretical foundation for further analysis on molecular mechanism of cotton resistance to copper and promoting the large-scale planting Zhongmian 63 in the copper-contaminated area.

Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 920 ◽  
Author(s):  
Jiali Song ◽  
Hui Huang ◽  
Shiwei Song ◽  
Yiting Zhang ◽  
Wei Su ◽  
...  

The interacted effects of photoperiod and nutrient solution concentrations (NSCs) on nutritional quality and antioxidant and mineral content in lettuce were investigated in this study. There were a total of nine treatments by three photoperiods (12 h/12 h, 15 h/9 h, and 18 h/6 h), with a combination of three NSCs (1/4, 1/2, and 3/4 NSC). The contents of photosynthetic pigment, mineral element, and nutritional quality were markedly affected by the combination of photoperiod and NSC. The highest leaf number and plant weight were found in lettuce under the combination of 18–0.25X. There was a higher content of photosynthetic pigment in treatment of 15-0.25X. Shorter photoperiod (12 h/12 h and 15 h/9 h) and NSC (1/4 and 1/2 NSC) contributed to reduced nitrate contents and higher contents of free amino acid, soluble protein, and vitamin C. Longer photoperiod and lower NSC could increase soluble sugar content. The content of total P, K, and Ca exhibited a similar trend under the combination of photoperiod and NSC, with a higher content at 3/4 NSC under different photoperiods. Lower contents of total Zn and N were found under longer photoperiod. Moreover, higher antioxidant contents, including 2, 2-diphenyl-1-picrylhydrazyl (DPPH), value of ferric-reducing antioxidant power (FRAP), flavonoid, polyphenol, and anthocyanin were observed under shorter photoperiod, with the peak under 12-0.50X. Generally, 12-0.50X might be the optimal treatment for the improvement of the nutritional quality of lettuce in a plant factory that produced high-quality vegetables.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1082
Author(s):  
Ting Ma ◽  
Qiong Wu ◽  
Na Liu ◽  
Rong Zhang ◽  
Zhiqing Ma

The widespread application of biostimulants with a growing trend represents sustainable practices aimed at improving growth and yield and alleviating stresses in green agricultural system. Phthalanilic acid (PPA), with biostimulatory functions, has been increasingly applied to fruit and vegetable production. However, its specific biostimulatory effects on growth and development of cowpea (Vigna unguiculata) plants is still unclear. In this study, the regulatory function of foliar spraying PPA at the flowering timing in morphometric (length, width, single pod weight and yield), physiological (relative electrical conductivity), and biochemical (antioxidant enzymes activity, photosynthetic pigment, malondialdehyde, vitamin C, soluble protein, and soluble sugar content) parameters of cowpea plants were investigated. In general, PPA treatments exhibited higher antioxidant enzymes activities (with an increase of 11.89–51.62% in POD), lower relative conductivity (with a decrease of 22.66–62.18%), increased photosynthetic pigment levels and amounts of free proline (with an increase of 24.62–90.52%), and decreased malondialdehyde. Furthermore, the length, width and weight of single pod, podding rate (with an increase of 19.64%), vitamin C, soluble protein (with an increase of 18.75%), and soluble sugar content were increased by 200 mg·L−1 PPA. These data, together with an increased yield of 15.89%, suggest that PPA positively regulates the growth and development, improving fruit quality and yield, especially at 200 mg·L−1. This study indicates that PPA has biostimulatory effects in cowpea production and shows application prospect in field cultivation.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1790
Author(s):  
Xiao-Ning Bai ◽  
Han Hao ◽  
Zeng-Hui Hu ◽  
Ping-Sheng Leng

Salt stress harms the growth and development of plants, and the degree of soil salinization in North China is becoming increasingly severe. Ectomycorrhiza (ECM) is a symbiotic system formed by fungi and plants that can improve the growth and salt tolerance of plants. No studies to date have examined the salt tolerance of Quercus mongolica, a typical ectomycorrhizal tree species of temperate forests in the northern hemisphere. Here, we inoculated Q. mongolica with two ectomycorrhizal fungi (Gomphidius viscidus; Suillus luteus) under NaCl stress to characterize the effects of ECM. The results showed that the symbiotic relationship of Q. mongolica with G. viscidus was more stable than that with S. luteus. The cross-sectional area of roots increased after inoculation with the two types of ectomycorrhizal fungi. Compared with the control group, plant height, soluble sugar content, and soluble protein content of leaves were 1.62, 2.41, and 2.04 times higher in the G. viscidus group, respectively. Chlorophyll (Chl) content, stomatal conductance (Gs), and intracellular CO2 concentration (Ci) were significantly higher in Q. mongolica inoculated with ectomycorrhizal fungi than in the control, but differences in the net photosynthetic rate (Pn), transpiration rate (Tr), and photosystem II maximum photochemical efficiency (Fv/Fm) were lower. The relative conductivity of Q. mongolica inoculated with the two ectomycorrhizal fungi was consistently lower than that of non-mycorrhizal seedlings, with the effect of G. viscidus more pronounced than that of S. luteus. The malondialdehyde (MDA) content showed a similar pattern. Peroxidase (POD) and catylase (CAT) levels in mycorrhizal seedlings were generally higher than those of non-mycorrhizal seedlings under normal conditions, and were significantly higher than those of non-mycorrhizal seedlings on the 36th and 48th day after salt treatment, respectively. Overall, the results indicated that the salt tolerance of Q. mongolica seedlings was improved by ectomycorrhizal inoculation.


2019 ◽  
Vol 113 (1) ◽  
pp. 29 ◽  
Author(s):  
Mahdieh HOUSHANI ◽  
Seyed Yahya SALEHI-LISAR ◽  
Ali MOVAFEGHI ◽  
Ruhollah MOTAFAKKERAZAD

<p>Polycyclic aromatic hydrocarbons (PAHs) are a class of organic pollutants effecting different aspects of plants physiology. To assess the physiological responses of plants to PAHs, maize (<em>Zea mays</em>)<em> </em>was treated with 25, 50, 75, and 100 ppm of pyrene and after 21 days, the activity of some antioxidant enzymes, malondialdehyde (MDA), total flavonoid, total anthocyanin, and soluble sugar contents were measured in shoots and roots of plants. Pyrene led to increase MDA content as well as CAT, POD, and SOD activities. Increase in pyrene concentration reduced all studied growth variables and significantly increased photosynthetic pigments contents of plants. Soluble sugar content was significantly higher in the shoot, while that was reduced in the roots through increasing of pyrene concentration (<em>p &lt;</em> 0.05). Also, the increase of pyrene concentration decreased total flavonoid content compared to anthocyanin content. In conclusion, these findings supported the hypothesis that pyrene toxicity induces oxidative stress in the maize plant and it also increases the antioxidant systems in order to moderating stress condition. However, the antioxidant system of maize was not strong enough to eliminate all produced ROS at high concentrations, thus this caused oxidative damage to the plant and decreased its growth variables.</p>


Author(s):  
Ni Putu Diah Cahyani Subamia ◽  
Komang Ayu Nocianitri ◽  
I Dewa Gede Mayun Permana

Type II diabetes mellitus due to an unhealthy lifestyle, one of which is the lack of fiber in daily food consumption. One food that has a high fiber content is tofu dregs. The purpose of this study was to determine substitution of wheat flour with tofu dregs flour to produce a snack bar with the best characteristics, and determine the effect of consumption of snack bar from tofu dregs on blood sugar content in rats. The research was conducted two steps. Step I: Formulation of snack bar using a completely randomized design with tofu dregs flour concentration of 0 %, 10 %, 20 %, 30 %, 40 %, and 50 %. The variables of this study were the content of water, ash, protein, fat, carbohydrates, sensory tests, and effectiveness tests. Step II: the best characteristic snack bar in the step I was used experimental rats. This step used true experimental design with pre-post test control group design. The variables of study were blood glucose levels before treatment and after treatment. The treatment group consisted of normal, negative, positive control, and snack bar. The results of the first step of the research showed that substitution of wheat flour with 40 % tofu dregs produced the best characteristic snack bar with 17.19 % water content, 1.33 % ash content, 11.03 % protein, 20.53 % fat, 49.92 % carbohydrate, light brown color, unpleasant aroma, distinctive soy taste, crumb texture, 0.63 % water soluble food fiber, 1.57 % water insoluble fiber, and total food fiber 2.36 %. The results of the second step of the study showed that the provision of substitution of wheat flour with tofu dregs flour 40 % could reduce blood sugar levels in diabetic mellitus rats until normal, start 290 mg/dl to 108.5 mg/dl. Tofu dregs flour can be used for snack bar formulations for people with diabetes mellitus.


Author(s):  
Nael Mohammed Sarheed ◽  
Osamah Faisal Kokas ◽  
Doaa Abd Alabas Muhammed Ridh

The plant of castor is widely spread in the Iraqi land, and characterized with containing ricin toxin, which has a very serious effects, and because the seeds of this plant scattered in the agricultural soil and rivers water, which increases the exposure of humans and animals to these beans. Objective: This experiment was designed to study the effect of high concentration of castor bean powder in some physiological and biochemical parameters and changes in some tissues of the body, as well as trying to use doxycycline to reduce the effects of ingestion of these seeds. Materials and Methods: In the experiment, 24 local rabbits were raised and fed in the Animal House of the Faculty of Medicine / Al-Muthanna University, then divided into four groups and treated for three weeks (21 days), Control group: treated with normal saline solution (0.9) orally throughout the experiment, G1: was treated orally with a concentration of 25 mg / kg of castor bean powder daily during the experiment, G2 : orally treated 25 mg / kg of castor bean and 25 mg / kg of doxycycline, G3: orally treated 25 mg / kg of castor powder with 50 mg / kg of doxycycline daily throughout the trial period. Results: The results of the experiment showed significant changes (P less than 0.05) in all physiological and biochemical blood tests when compared with control group. There was a significant decrease in PCV, Hb, RBC, T.protein and body weights, while demonstrated a significant increase in WBC, Urea, Creatinine, ALT, AST and ALP, with distortions in liver and kidney of animals that treated with Castor beans. In contrast, the treatment with doxycycline and caster beans showed significant improvement reflected by a normal proportion in physiological tests and biochemical tests with improvement in the tissues when compared to control group. Conclusions: It can be concluded from this study that castor bean has high toxic and pathogenic effects that may be dangerous to the life of the organism. Therefore, it is advisable to be cautious of these pills and avoid exposure to them, also recommended to take high concentrations of doxycycline treatment when infected with castor bean poisoning.


2019 ◽  
Vol 22 (5) ◽  
pp. 346-354
Author(s):  
Yan A. Ivanenkov ◽  
Renat S. Yamidanov ◽  
Ilya A. Osterman ◽  
Petr V. Sergiev ◽  
Vladimir A. Aladinskiy ◽  
...  

Aim and Objective: Antibiotic resistance is a serious constraint to the development of new effective antibacterials. Therefore, the discovery of the new antibacterials remains one of the main challenges in modern medicinal chemistry. This study was undertaken to identify novel molecules with antibacterial activity. Materials and Methods: Using our unique double-reporter system, in-house large-scale HTS campaign was conducted for the identification of antibacterial potency of small-molecule compounds. The construction allows us to visually assess the underlying mechanism of action. After the initial HTS and rescreen procedure, luciferase assay, C14-test, determination of MIC value and PrestoBlue test were carried out. Results: HTS rounds and rescreen campaign have revealed the antibacterial activity of a series of Nsubstituted triazolo-azetidines and their isosteric derivatives that has not been reported previously. Primary hit-molecule demonstrated a MIC value of 12.5 µg/mL against E. coli Δ tolC with signs of translation blockage and no SOS-response. Translation inhibition (26%, luciferase assay) was achieved at high concentrations up to 160 µg/mL, while no activity was found using C14-test. The compound did not demonstrate cytotoxicity in the PrestoBlue assay against a panel of eukaryotic cells. Within a series of direct structural analogues bearing the same or bioisosteric scaffold, compound 2 was found to have an improved antibacterial potency (MIC=6.25 µg/mL) close to Erythromycin (MIC=2.5-5 µg/mL) against the same strain. In contrast to the parent hit, this compound was more active and selective, and provided a robust IP position. Conclusion: N-substituted triazolo-azetidine scaffold may be used as a versatile starting point for the development of novel active and selective antibacterial compounds.


Author(s):  
Aysegul Altunkeser ◽  
Zeynep Ozturk Inal ◽  
Nahide Baran

Background: Shear wave electrography (SWE) is a novel non-invasive imaging technique which demonstrate tissue elasticity. Recent research evaluating the elasticity properties of normal and pathological tissues emphasize the diagnostic importance of this technique. Aims: Polycystic ovarian syndrome (PCOS), which is characterized by menstrual irregularity, hyperandrogenism, and polycystic overgrowth, may cause infertility. The aim of this study was to evaluate the elasticity of ovaries in patients with PCOS using SWE. Methods: 66 patients diagnosed with PCOS according to the Rotterdam criteria (PCOS = group I) and 72 patients with non-PCOS (Control = group II), were included in the study. Demographic and clinical characteristics of the participants were recorded. Ovarian elasticity was assessed in all patients with SWE, and speed values were obtained from the ovaries. The elasticity of the ovaries was compared between the two groups. Results: While there were statistically significant differences between the groups in body mass index (BMI), right and left ovarian volumes, luteinizing hormone and testosterone levels (p<0.05), no significant differences were found between groups I and II in the velocity (for the right ovary 3.89±1.81 vs. 2.93±0.72, p=0.301; for the left ovary 2.88±0.65 vs. 2.95±0.80, p=0.577) and elastography (for the right ovary 36.62±17.78 vs. 36.79±14.32, p=0.3952; for the left ovary 36.56±14.15 vs. 36.26±15.10, p=0.903) values, respectively. Conclusion: We could not obtain different velocity and elastography values from the ovaries of the patients with PCOS using SWE. Therefore, further large-scale studies are needed to elucidate this issue.


2018 ◽  
Vol 5 (03) ◽  
Author(s):  
ARADHNA KUMARI ◽  
IM KHAN ◽  
ANIL KUMAR SINGH ◽  
SANTOSH KUMAR SINGH

Poplar clone Kranti was selected to assess the morphological, physiological and biochemical responses under drought at different levels of water stress, as it is a common clone used to be grown in Uttarakhand for making paper and plywood. The cuttings of Populus deltoides L. (clone Kranti) were exposed to four different watering regimes (100, 75, 50 and 25% of the field capacity) and changes in physiological and biochemical parameters related with drought tolerance were recorded. Alterations in physiological (i.e. decrease in relative water content) and biochemical parameters (i.e. increase in proline and soluble sugar content and build-up of malondialdehyde by-products) occurred in all the three levels of water stress, although drought represented the major determinant. Drought treatments (75%, 50% and 25% FC) decreased plant height, radial stem diameter, harvest index, total biomass content and RWC in all the three watering regimes compared to control (100% FC). Biochemical parameters like proline, soluble sugar and MDA content increased with severity and duration of stress, which helped plants to survive under severe stress. It was analyzed that for better wood yield poplar seedlings should avail either optimum amount of water (amount nearly equal to field capacity of soil) or maximum withdrawal up to 75% of field capacity up to seedling establishment period (60 days). Furthermore, this study manifested that acclimation to drought stress is related with the rapidity, severity, and duration of the drought event of the poplar species.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1670 ◽  
Author(s):  
Wölfle-Roos JV ◽  
Katmer Amet B ◽  
Fiedler J ◽  
Michels H ◽  
Kappelt G ◽  
...  

Background: Uncemented implants are still associated with several major challenges, especially with regard to their manufacturing and their osseointegration. In this study, a novel manufacturing technique—an optimized form of precision casting—and a novel surface modification to promote osseointegration—calcium and phosphorus ion implantation into the implant surface—were tested in vivo. Methods: Cylindrical Ti6Al4V implants were inserted bilaterally into the tibia of 110 rats. We compared two generations of cast Ti6Al4V implants (CAST 1st GEN, n = 22, and CAST 2nd GEN, n = 22) as well as cast 2nd GEN Ti6Al4V implants with calcium (CAST + CA, n = 22) and phosphorus (CAST + P, n = 22) ion implantation to standard machined Ti6Al4V implants (control, n = 22). After 4 and 12 weeks, maximal pull-out force and bone-to-implant contact rate (BIC) were measured and compared between all five groups. Results: There was no significant difference between all five groups after 4 weeks or 12 weeks with regard to pull-out force (p > 0.05, Kruskal Wallis test). Histomorphometric analysis showed no significant difference of BIC after 4 weeks (p > 0.05, Kruskal–Wallis test), whereas there was a trend towards a higher BIC in the CAST + P group (54.8% ± 15.2%), especially compared to the control group (38.6% ± 12.8%) after 12 weeks (p = 0.053, Kruskal–Wallis test). Conclusion: In this study, we found no indication of inferiority of Ti6Al4V implants cast with the optimized centrifugal precision casting technique of the second generation compared to standard Ti6Al4V implants. As the employed manufacturing process holds considerable economic potential, mainly due to a significantly decreased material demand per implant by casting near net-shape instead of milling away most of the starting ingot, its application in manufacturing uncemented implants seems promising. However, no significant advantages of calcium or phosphorus ion implantation could be observed in this study. Due to the promising results of ion implantation in previous in vitro and in vivo studies, further in vivo studies with different ion implantation conditions should be considered.


Sign in / Sign up

Export Citation Format

Share Document