Transcription Factors in Deriving β Cell Regeneration; A Potential Novel Therapeutic Target

2021 ◽  
Vol 21 ◽  
Author(s):  
Basheer Abdullah Marzoog ◽  
Tatyana Ivanovna Vlasova

: Recently, remarkable advances have been achieved in the molecular biopathology field, and researchers turned to evaluate the role, molecular mechanisms, and clinical value of transcription factors in curing a variety of degenerative parenchymal pathologies. Special agents have the capability to cell lineage reprogramming termed transcription factors with a capacity for gene expression modification. Therefore, whatever niche factor may modify gene expression is termed as a transcription factor. A variety of transcription factors has been identified to participate in the regulation of pancreatic stem cell maturation, differentiation, and proliferation, primarily, Pdx1, NeuroG3, MafA. transcription factors can also transdifferentiate somatic cells in between liver and gallbladder cells into insulin-producing cells. These heterogenic capabilities of the transcription factors are of clinical significance since through can control cells' regeneration capacity. Physiologically, the pancreatic cells are subdivided into exocrine and endocrine cells. Pancreatic endocrine dysfunction is clinically more common and of more clinical relevance. The paper will illustrate the role and possible mechanisms of transcription factors in the transdifferentiation of endoderm-derived somatic cells into pancreatic beta-like cells. Clinically, understanding the potential mechanisms in generating physiologic beta cells is extremely crucial to optimize current therapies and evaluate new therapeutic targets via recruiting specific transcription factors. The transcription factors can be applied to both types of diabetes and chronic pancreatitis.

2018 ◽  
Author(s):  
Ashley M. Ingiosi ◽  
Taylor Wintler ◽  
Hannah Schoch ◽  
Kristan G. Singletary ◽  
Dario Righelli ◽  
...  

AbstractAutism Spectrum Disorder (ASD) is the most prevalent neurodevelopmental disorder in the United States and often co-presents with sleep problems. Sleep problems in ASD predict the severity of ASD core diagnostic symptoms and have a considerable impact on the quality of life of caregivers. Little is known, however, about the underlying molecular mechanisms. We investigated the role of Shank3, a high confidence ASD gene candidate, in sleep architecture and regulation. We show that mice lacking exon 21 of Shank3 have problems falling asleep even when sleepy. Using RNA-seq we show that sleep deprivation increases the differences in gene expression between mutants and wild types, downregulating circadian transcription factors Per3, Dec2, Hlf, Tef, and Reverbα. Shank3 mutants also have trouble regulating wheel-running activity in constant darkness. Overall our study shows that Shank3 is an important modulator of sleep and clock gene expression.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Saivageethi Nuthikattu ◽  
Dragan Milenkovic ◽  
John Rutledge ◽  
Amparo Villablanca

AbstractHyperlipidemia is a risk factor for dementia, and chronic consumption of a Western Diet (WD) is associated with cognitive impairment. However, the molecular mechanisms underlying the development of microvascular disease in the memory centers of the brain are poorly understood. This pilot study investigated the nutrigenomic pathways by which the WD regulates gene expression in hippocampal brain microvessels of female mice. Five-week-old female low-density lipoprotein receptor deficient (LDL-R−/−) and C57BL/6J wild type (WT) mice were fed a chow or WD for 8 weeks. Metabolics for lipids, glucose and insulin were determined. Differential gene expression, gene networks and pathways, transcription factors, and non-protein coding RNAs were evaluated by genome-wide microarray and bioinformatics analysis of laser captured hippocampal microvessels. The WD resulted in differential expression of 2,412 genes. The majority of differential gene expression was attributable to differential regulation of cell signaling proteins and their transcription factors, approximately 7% was attributable to differential expression of miRNAs, and a lesser proportion was due to other non-protein coding RNAs, primarily long non-coding RNAs (lncRNAs) and small nucleolar RNAs (snoRNAs) not previously described to be modified by the WD in females. Our findings revealed that chronic consumption of the WD resulted in integrated multilevel molecular regulation of the hippocampal microvasculature of female mice and may provide one of the mechanisms underlying vascular dementia.


Endocrinology ◽  
2019 ◽  
Vol 160 (12) ◽  
pp. 2929-2945
Author(s):  
M Elena Martinez ◽  
Christine W Lary ◽  
Aldona A Karaczyn ◽  
Michael D Griswold ◽  
Arturo Hernandez

Abstract Premature overexposure to thyroid hormone causes profound effects on testis growth, spermatogenesis, and male fertility. We used genetic mouse models of type 3 deiodinase (DIO3) deficiency to determine the genetic programs affected by premature thyroid hormone action and to define the role of DIO3 in regulating thyroid hormone economy in testicular cells. Gene expression profiling in the neonatal testis of DIO3-deficient mice identified 5699 differentially expressed genes. Upregulated and downregulated genes were, respectively, involved according to DAVID analysis with cell differentiation and proliferation. They included anti-Müllerian hormone and genes involved in the formation of the blood–testis barrier, which are specific to Sertoli cells (SCs). They also included steroidogenic genes, which are specific to Leydig cells. Comparison with published data sets of genes enriched in SCs and spermatogonia, and responsive to retinoic acid (RA), identified a subset of genes that were regulated similarly by RA and thyroid hormone. This subset of genes showed an expression bias, as they were downregulated when enriched in spermatogonia and upregulated when enriched in SCs. Furthermore, using a genetic approach, we found that DIO3 is not expressed in SCs, but spermatogonia-specific inactivation of DIO3 led to impaired testis growth, reduced SC number, decreased cell proliferation and, especially during neonatal development, altered gene expression specific to somatic cells. These findings indicate that spermatogonial DIO3 protects testicular cells from untimely thyroid hormone signaling and demonstrate a mechanism of cross-talk between somatic and germ cells in the neonatal testis that involves the regulation of thyroid hormone availability and action.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Yao Zhang ◽  
Qiao-Lu Zang ◽  
Li-Wang Qi ◽  
Su-Ying Han ◽  
Wan-Feng Li

Grafting, cutting, and pruning are important horticultural techniques widely used in the establishment of clonal forestry. After the application of these techniques, some properties of the plants change, however, the underlying molecular mechanisms are still unclear. In our previous study, 27 age-related transcripts were found to be expressed differentially between the juvenile vegetative (1- and 2-year-old) and adult reproductive (25- and 50-year-old) phases of Larix kaempferi. Here, we re-analyzed the 27 age-related transcripts, cloned their full-length cDNA sequences, and measured their responses to grafting, cutting, and pruning. After sequence analysis and cloning, 20 transcription factors were obtained and annotated, most of which were associated with reproductive development, and six (LaAGL2-1, LaAGL2-2, LaAGL2-3, LaSOC1-1, LaAGL11, and LaAP2-2) showed regular expression patterns with L. kaempferi aging. Based on the expression patterns of these transcription factors in L. kaempferi trees subjected to grafting, cutting, and pruning, we concluded that (1) cutting and pruning rejuvenate the plants and change their expression, and the effects of cutting on gene expression are detectable within 14 years, although the cutting seedlings are still maturing during these years; (2) within three months after grafting, the rootstock is more sensitive to grafting than the scion and readily becomes mature with the effect of the scion, while the scion is not readily rejuvenated by the effect of the rootstock; and (3) LaAGL2-2 and LaAGL2-3 are more sensitive to grafting, while LaAP2-2 is impervious to it. These findings not only provide potential molecular markers to assess the state of plants but also aid in studies of the molecular mechanisms of rejuvenation.


Reproduction ◽  
2010 ◽  
Vol 139 (4) ◽  
pp. 749-757 ◽  
Author(s):  
Gillian Cowan ◽  
Andrew J Childs ◽  
Richard A Anderson ◽  
Philippa T K Saunders

The somatic (Sertoli cell (SC), Leydig cell (LC), and peritubular myoid (PTM) cell) cells play key roles in development of the fetal testis. We established monolayer cultures from second trimester human testes and investigated the pattern of expression of cell-lineage characteristic mRNAs. Expression of some SC-associated genes (SRY, SOX9, WT1, GATA4, and SF1) was detectable up to and including passage 3 (P3), while others (anti-Müllerian hormone; desert hedgehog) present prior to dissociation were not expressed in the cultured cells. Transcripts encoding the androgen receptor were expressed but addition of dihydrotestosterone (DHT) had no impact on expression of mRNAs expressed in SC or LC. Total concentrations of mRNAs encoding smooth muscle actin (ACTA2) and desmin increased from P1 to P3; an increasing proportion of the cells in the cultures were immunopositive for ACTA2 consistent with proliferation/differentiation of PTM cells. In conclusion, somatic cell monolayer cultures were established from human fetal testes; these cultures could form the basis for future studies based on isolation of purified populations of somatic cells and manipulation of gene expression that is difficult to achieve with organ culture systems. Our results suggest that fetal SC do not maintain a fully differentiated phenotype in vitro, yet PTM (ACTA2 positive) cells readily adapt to monolayer culture conditions in the presence of DHT. This culture system provides an opportunity to study the impact of regulatory factors on gene expression in PTM cells, a population thought to play a key role in mediating androgen action within the developing testis.


2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Damian Kołat ◽  
Żaneta Kałuzińska ◽  
Andrzej K. Bednarek ◽  
Elżbieta Płuciennik

Abstract The Activator Protein 2 (AP-2) transcription factor (TF) family is vital for the regulation of gene expression during early development as well as carcinogenesis process. The review focusses on the AP-2α and AP-2γ proteins and their dualistic regulation of gene expression in the process of carcinogenesis. Both AP-2α and AP-2γ influence a wide range of physiological or pathological processes by regulating different pathways and interacting with diverse molecules, i.e. other proteins, long non-coding RNAs (lncRNA) or miRNAs. This review summarizes the newest information about the biology of two, AP-2α and AP-2γ, TFs in the carcinogenesis process. We emphasize that these two proteins could have either oncogenic or suppressive characteristics depending on the type of cancer tissue or their interaction with specific molecules. They have also been found to contribute to resistance and sensitivity to chemotherapy in oncological patients. A better understanding of molecular network of AP-2 factors and other molecules may clarify the atypical molecular mechanisms occurring during carcinogenesis, and may assist in the recognition of new diagnostic biomarkers.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Nan Deng ◽  
Chen Hou ◽  
Boxiang He ◽  
Fengfeng Ma ◽  
Qingan Song ◽  
...  

Abstract Background Gnetum is an economically important tropical and subtropical gymnosperm genus with various dietary, industrial and medicinal uses. Many carbohydrates, proteins and fibers accumulate during the ripening of Gnetum seeds. However, the molecular mechanisms related to this process remain unknown. Results We therefore assembled a full-length transcriptome from immature and mature G. luofuense seeds using PacBio sequencing reads. We identified a total of 5726 novel genes, 9061 alternative splicing events, 3551 lncRNAs, 2160 transcription factors, and we found that 8512 genes possessed at least one poly(A) site. In addition, gene expression comparisons of six transcriptomes generated by Illumina sequencing showed that 14,323 genes were differentially expressed from an immature stage to a mature stage with 7891 genes upregulated and 6432 genes downregulated. The expression of 14 differentially expressed transcription factors from the MADS-box, Aux/IAA and bHLH families was validated by qRT-PCR, suggesting that they may have important roles in seed ripening of G. luofuense. Conclusions These findings provide a valuable molecular resource for understanding seed development of gymnosperms.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1959
Author(s):  
Sang-Eun Kim ◽  
Ryoichi Mori ◽  
Isao Shimokawa

Calorie restriction (CR) has been shown to extend lifespan and retard aging-related functional decline in animals. Previously, we found that the anti-neoplastic and lifespan-extending effects of CR in mice are regulated by forkhead box O transcription factors (FoxO1 and FoxO3), located downstream of growth hormone (GH)–insulin-like growth factor (IGF)-1 signaling, in an isoform-specific manner. Inflammaging is a term coined to represent that persistent low-level of inflammation underlies the progression of aging and related diseases. Attenuation of inflammaging in the body may underlie the effects of CR. Recent studies have also identified cellular senescence and activation of the nucleotide-binding domain, leucine-rich-containing family, pyrin-domain-containing-3 (NLRP3) inflammasome as causative factors of inflammaging. In this paper, we reviewed the current knowledge of the molecular mechanisms linking the effects of CR with the formation of inflammasomes, particularly focusing on possible relations with FoxO3. Inflammation in the brain that affects adult neurogenesis and lifespan was also reviewed as evidence of inflammaging. A recent progress of microRNA research was described as regulatory circuits of initiation and propagation of inflammaging. Finally, we briefly introduced our preliminary results obtained from the mouse models, in which Foxo1 and Foxo3 genes were conditionally knocked out in the myeloid cell lineage.


2021 ◽  
Author(s):  
Moataz Dowaidar

Cancer treatments used to be a one-size-fits-all strategy; nowadays, decisions are based on the specific molecular pathology of each patient's tumor. Personalized medicine is based on a deep understanding of disease mechanisms and the use of customized drugs to target those mechanisms, with the potential of greater treatment efficacy. The transcriptome revolution offered molecular insight into some carcinogenic pathways. This study has led to the conclusion that the four most common IHC biomarkers (HER2, ER, PR, and Ki67) can not accurately represent the complexity of breast cancer sickness. The GEP gives an in-depth insight of illness heterogeneity, better than a single protein or gene expression. Development of a framework and rigorous criteria have caused delays in the application of the GEP in clinical and regulatory contexts. There was also the issue of researchers and physicians becoming distracted by external pressures and being pulled in other directions.Clinicians use the classification approach for better judgements about breast cancer. Whether intrinsic subtyping has enough clinical value to merit including GEP as a supplemental test alongside IHC testing in international guidelines is still debated. Even though intrinsic subtyping has an influence on current clinical trial designs, it is relevant to biomarker research. It is time to include it in the daily routine of breast cancer sufferers. a continuing emphasis on refining this classification Nucleotide variations and their underlying molecular mechanisms, and the effect of the immune system on treatment outcome, will inform novel therapeutic regimes. Combining biological processes, as a result, would probably probably be included in the implementation of tailored therapeutic paradigms in breast cancer patients.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3428-3428
Author(s):  
Liang Li ◽  
Rushabh Modi ◽  
Xiwei Wu ◽  
Stephen J. Forman ◽  
Ravi Bhatia

Abstract Delta-Like 1 (DLK) is an EGF-like transmembrane protein, which is overexpressed in myelodysplastic syndrome (MDS) CD34+ cells. We have previously shown that ectopic DLK expression inhibits HL-60 cell differentiation and proliferation through intracellular domain interactions. To further investigate mechanisms underlying DLK effects on myeloid cell differentiation and proliferation, we compared gene expression profiles of DLK expressing and control HL-60 cells, with or without differentiating induction with ATRA, using Affymetrix HG-U133A arrays. Gene expression data was analyzed using affy and limma (linear model of microarray analysis) packages in the open-source BioConductor project (v 1.6). Raw data were processed using robust multi-chip average (RMA) algorithm, a linear model fit to each gene, and the following comparisons were made: (a) effects of DLK expression in unstimulated cells, (b) effects of DLK expression in ATRA exposed cells, (c) effects of ATRA induction on R1 cells, (d) effects of ATRA induction on DLK+ cells, and (e) differences in the response of DLK+ vs. control cells to ATRA. Adjusted P values and log odds of differential expression (B statistic, 50% probability when B=0) were calculated. B values > 0 were considered statistically significant. 523 genes were differentially expressed between unstimulated control and DLK+ cells, 343 genes were differentially expressed between control and DLK+ cells after ATRA stimulation, and 204 genes were common to the two sets. 802 genes were differentially expressed after ATRA stimulation in control cells, 742 genes in DLK+ cells, with 550 genes common to the two sets. 13 genes were differentially expressed when ATRA responses of control and DLK+ cells were compared. Gene ontology (GO) analyses indicated that "Biological processes" significantly affected by DLK overexpression included signal transduction, cell cycle, proliferation, cell death, protein metabolism and enzyme cascades, and "Molecular functions" most affected included nucleotide/DNA binding and protein kinase activity. These observations are consistent with observed cellular effects of DLK. Using MotifRegressor software, we performed promoter analysis correlating common transcription factor-binding motifs with expression profiles of genes differentially expressed between DLK+ and control cells. We identified the transcription factors (TF) PBX, GATA-1, c-Myc: Max, HIF-1, DEC1, Hand1, Lmo2, NKX25, GKLF and AP-1 as being potentially involved in DLK-mediated changes in gene expression. The observed patterns of differential gene expression were consistent with altered activities of these TF. Electrophoresis mobility shift assays (EMSA) indicated increased PBX and reduced HIF-1 and GATA-1 activities in DLK+ cells. Interestingly, Hand1, c-Myc: Max and Dec1 are basic Helix-loop-Helix (b-HLH) factors with E box binding sites, which are known to associate and form regulatory complexes with other TF. TF such as GATA-1, GLKF and Lmo2, also identified in our analysis, are known to be associated with such complexes. In conclusion, gene expression profiles of DLK expressing human myeloid cells are consistent with observed alterations in cell proliferation and differentiation. We have identified TF that may act individually and/or in concert to induce the observed changes in gene expression in DLK+ cells. Further evaluation of their role of these TF in mediating DLK effects and in abnormal hematopoietic cell growth in MDS is warranted.


Sign in / Sign up

Export Citation Format

Share Document