scholarly journals COVID-19. SARS-Cov-2 pandemic, transmission pathways, distribution features, and individual susceptibility

2020 ◽  
Vol 4 (2) ◽  
pp. 48-60
Author(s):  
Dmitrii Tikhonov ◽  
Vsevolod Vladimirtsev

In December 2019, an outbreak of pneumonia of unknown etiology was registered in Wuhan, Hubei province of the people's Republic of China. The virus was soon isolated and its genome sequenced. It is called the severe acute respiratory syndrome coronavirus‑2 (SARS-Cov-2, English SARS-Cov-2), and the disease caused by it is coronavirus infection – 19 (English COVID-19). Who recognized the COVID-19 outbreak as a pandemic on March 11. The entire world is currently affected by the pandemic. The first focus of coronavirus infection in Russia was detected on February 27, brought from Europe. The infection reached the most remote corners of Siberia by mid-April. The aim of this study is to analyze the characteristics of SARS-Cov-2, its pathways into the body and individual susceptibility to the virus. Methods and materials. The review of scientific articles on the research topic was based on the analysis of scientific articles on COVID-19. Articles were searched in the Web of Sciences, Scopus, PubMed, and eLIBRARY databases, as well as by article links. Results. The SARS-Cov-2 virus is a single-stranded positive-chain RNA virus from the Coronavirus family (Coronaviridae). According to most researchers, the SARS-Cov-2 virus evolved from bat coronaviruses, with the approximate time of divergence from the nearest bat virus species RaTG13 occurring in 1963. It uses ACE-2 receptors, which are widely present throughout the body, to enter host cells. High virus contagiousness is provided by the acquisition of an additional furin site for cleavage of the spike protein in the form of the amino acid sequence Arg-Arg-Ala-Arg (682RRAR685). This site of the S1 domain of the spike protein can be cleaved by: transmembrane serine protease 2 (TMPRSS2), furin, but also many cellular and extracellular proteases, as well as plasmin(ogen) s. Many ways of cleavage of the spike protein significantly increase the ability of the virus to enter the cell and its contagiousness. The main routes of transmission of SARS-Cov-2 are respiratory drops and close contact. The main entrance gate of the virus is the respiratory tract, may be conjunctiva, likely fecal-oral pathway. The article discusses the skin as an entrance gate. Some skin manifestations of the disease can be caused by this way. The incubation period of COVID-19 lasts on average 5-6 days, while the live infectious virus begins to be released 2-3 days before the first symptoms appear and stops on the 8th day after the symptoms appear, but only in severe patients the virus release can last up to 15 days. Asymptomatic patients may account for 40% of cases. Features of individual susceptibility to COVID-19 and the severity of clinical manifestations may be caused by: 1) the property of allelic variants of the virus and their virulence; 2) the infectious dose of the virus; 3) the use of protective equipment; 4) individual characteristics of the human body; 5) pathogenic mechanisms of infection development. The hypothesis of the protective role of the mumps vaccine explains the phenomenon of extremely low morbidity, asymptomatic or mild infection in children more convincingly. Mass vaccination against mumps in our country began in 1981 (39 years ago), which is probably why children and people under 40 rarely get a severe form of infection in our country. Conclusion. SARS-Cov-2 has pandemic potential and is estimated to be more severe than pandemic influenza viruses. Active isolation of the virus before the onset of symptoms, including by asymptomatic patients (including children), causes the rapid spread of infection and reduces the effectiveness of anti-epidemic measures. The presence of a significant segment of the population with cross-immunity to SARS-Cov-2, including and as a result of vaccination, it is the most likely cause of a high percentage of asymptomatic and mild forms of the disease among children and young people. Effective protection against coronavirus infection in 2019 can only be achieved by taking comprehensive measures to prevent the virus from entering the body through the respiratory tract, per os, conjunctiva and skin, although the latter pathway is not taken into account anywhere in the world. It should be noted that COVID-19 cannot be classified as a particularly dangerous infection, but its high contagiousness, the likelihood of multiple entry gates of the virus into the human body, multi-organ lesions and a high mortality rate of risk groups make it a special infection that requires significant efforts of humanity to eliminate it.

2021 ◽  
Author(s):  
Daniel Chertow ◽  
Sydney Stein ◽  
Sabrina Ramelli ◽  
Alison Grazioli ◽  
Joon-Yong Chung ◽  
...  

Abstract COVID-19 is known to cause multi-organ dysfunction1-3 in acute infection, with prolonged symptoms experienced by some patients, termed Post-Acute Sequelae of SARS-CoV-2 (PASC)4-5. However, the burden of infection outside the respiratory tract and time to viral clearance is not well characterized, particularly in the brain3,6-14. We performed complete autopsies on 44 patients with COVID-19 to map and quantify SARS-CoV-2 distribution, replication, and cell-type specificity across the human body, including brain, from acute infection through over seven months following symptom onset. We show that SARS-CoV-2 is widely distributed, even among patients who died with asymptomatic to mild COVID-19, and that virus replication is present in multiple extrapulmonary tissues early in infection. Further, we detected SARS-CoV-2 RNA in multiple anatomic sites, including regions throughout the brain, for up to 230 days following symptom onset. Despite extensive distribution of SARS-CoV-2 in the body, we observed a paucity of inflammation or direct viral cytopathology outside of the lungs. Our data prove that SARS-CoV-2 causes systemic infection and can persist in the body for months.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 375 ◽  
Author(s):  
Hellfritzsch ◽  
Scherließ

Vaccine delivery via mucosal surfaces is an interesting alternative to parenteral vaccine administration, as it avoids the use of a needle and syringe. Mucosal vaccine administration also targets the mucosal immune system, which is the largest lymphoid tissue in the human body. The mucosal immune response involves systemic, antigen-specific humoral and cellular immune response in addition to a local response which is characterised by a predominantly cytotoxic T cell response in combination with secreted IgA. This antibody facilitates pathogen recognition and deletion prior to entrance into the body. Hence, administration via the respiratory mucosa can be favoured for all pathogens which use the respiratory tract as entry to the body, such as influenza and for all diseases directly affecting the respiratory tract such as pneumonia. Additionally, the different mucosal tissues of the human body are interconnected via the so-called “common mucosal immune system”, which allows induction of an antigen-specific immune response in distant mucosal sites. Finally, mucosal administration is also interesting in the area of therapeutic vaccination, in which a predominant cellular immune response is required, as this can efficiently be induced by this route of delivery. The review gives an introduction to respiratory vaccination, formulation approaches and application strategies.


2019 ◽  
pp. 3-13
Author(s):  
Alexandru Cîtea ◽  
George-Sebastian Iacob

Posture is commonly perceived as the relationship between the segments of the human body upright. Certain parts of the body such as the cephalic extremity, neck, torso, upper and lower limbs are involved in the final posture of the body. Musculoskeletal instabilities and reduced postural control lead to the installation of nonstructural posture deviations in all 3 anatomical planes. When we talk about the sagittal plane, it was concluded that there are 4 main types of posture deviation: hyperlordotic posture, kyphotic posture, rectitude and "sway-back" posture.Pilates method has become in the last decade a much more popular formof exercise used in rehabilitation. The Pilates method is frequently prescribed to people with low back pain due to their orientation on the stabilizing muscles of the pelvis. Pilates exercise is thus theorized to help reactivate the muscles and, by doingso, increases lumbar support, reduces pain, and improves body alignment.


Humaniora ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 83-90
Author(s):  
Anak Agung Ayu Wulandari ◽  
Ade Ariyani Sari Fajarwati

The research would look further at the representation of the human body in both Balinese and Javanese traditional houses and compared the function and meaning of each part. To achieve the research aim, which was to evaluate and compare the representation of the human body in Javanese and Balinese traditional houses, a qualitative method through literature and descriptive analysis study was conducted. A comparative study approach would be used with an in-depth comparative study. It would revealed not only the similarities but also the differences between both subjects. The research shows that both traditional houses represent the human body in their way. From the architectural drawing top to bottom, both houses show the same structure that is identical to the human body; head at the top, followed by the body, and feet at the bottom. However, the comparative study shows that each area represents a different meaning. The circulation of the house is also different, while the Balinese house is started with feet and continued to body and head area. Simultaneously, the Javanese house is started with the head, then continued to body, and feet area.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuyun Li ◽  
Dongming Wang ◽  
Lili Zhi ◽  
Yunmei Zhu ◽  
Lan Qiao ◽  
...  

AbstractTo describle how respiratory tract infections (RTIs) that occurred in children with allergic asthma (AA) on allergen immunotherapy (AIT) during an influenza season. Data including clinical symptoms and treatment history of children (those with AA on AIT and their siblings under 14 years old), who suffered from RTIs during an influenza season (Dec 1st, 2019–Dec 31st, 2019), were collected (by face to face interview and medical records) and analyzed. Children on AIT were divided into 2 groups: stage 1 (dose increasing stage) and stage 2 (dose maintenance stage). Their siblings were enrolled as control. During the study period, 49 children with AA on AIT (33 patients in stage 1 and 16 patients in stage 2) as well as 49 children without AA ( their siblings ) were included. There were no significant differences in occurrences of RTIs among the three groups (p > 0.05). Compared with children in the other two groups, patients with RTIs in stage 2 had less duration of coughing and needed less medicine. Children on AIT with maintenance doses had fewer symptoms and recovered quickly when they were attacked by RTIs, which suggested that AIT with dose maintenance may enhance disease resistance of the body.


2021 ◽  
pp. 1354067X2110040
Author(s):  
Josefine Dilling ◽  
Anders Petersen

In this article, we argue that certain behaviour connected to the attempt to attain contemporary female body ideals in Denmark can be understood as an act of achievement and, thus, as an embodiment of the culture of achievement, as it is characterised in Præstationssamfundet, written by the Danish sociologist Anders Petersen (2016) Hans Reitzels Forlag . Arguing from cultural psychological and sociological standpoints, this article examines how the human body functions as a mediational tool in different ways from which the individual communicates both moral and aesthetic sociocultural ideals and values. Complex processes of embodiment, we argue, can be described with different levels of internalisation, externalisation and materialisation, where the body functions as a central mediator. Analysing the findings from a qualitative experimental study on contemporary body ideals carried out by the Danish psychologists Josefine Dilling and Maja Trillingsgaard, this article seeks to anchor such theoretical claims in central empirical findings. The main conclusions from the study are used to structure the article and build arguments on how expectations and ideals expressed in an achievement society become embodied.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Niina Haiminen ◽  
Filippo Utro ◽  
Ed Seabolt ◽  
Laxmi Parida

AbstractIn response to the ongoing global pandemic, characterizing the molecular-level host interactions of the new coronavirus SARS-CoV-2 responsible for COVID-19 has been at the center of unprecedented scientific focus. However, when the virus enters the body it also interacts with the micro-organisms already inhabiting the host. Understanding the virus-host-microbiome interactions can yield additional insights into the biological processes perturbed by viral invasion. Alterations in the gut microbiome species and metabolites have been noted during respiratory viral infections, possibly impacting the lungs via gut-lung microbiome crosstalk. To better characterize microbial functions in the lower respiratory tract during COVID-19 infection, we carry out a functional analysis of previously published metatranscriptome sequencing data of bronchoalveolar lavage fluid from eight COVID-19 cases, twenty-five community-acquired pneumonia patients, and twenty healthy controls. The functional profiles resulting from comparing the sequences against annotated microbial protein domains clearly separate the cohorts. By examining the associated metabolic pathways, distinguishing functional signatures in COVID-19 respiratory tract microbiomes are identified, including decreased potential for lipid metabolism and glycan biosynthesis and metabolism pathways, and increased potential for carbohydrate metabolism pathways. The results include overlap between previous studies on COVID-19 microbiomes, including decrease in the glycosaminoglycan degradation pathway and increase in carbohydrate metabolism. The results also suggest novel connections to consider, possibly specific to the lower respiratory tract microbiome, calling for further research on microbial functions and host-microbiome interactions during SARS-CoV-2 infection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mayukh Nath ◽  
Shovan Maity ◽  
Shitij Avlani ◽  
Scott Weigand ◽  
Shreyas Sen

AbstractRadiative communication using electromagnetic fields is the backbone of today’s wirelessly connected world, which implies that the physical signals are available for malicious interceptors to snoop within a 5–10 m distance, also increasing interference and reducing channel capacity. Recently, Electro-quasistatic Human Body Communication (EQS-HBC) was demonstrated which utilizes the human body’s conductive properties to communicate without radiating the signals outside the body. Previous experiments showed that an attack with an antenna was unsuccessful at a distance more than 1 cm from the body surface and 15 cm from an EQS-HBC device. However, since this is a new communication modality, it calls for an investigation of new attack modalities—that can potentially exploit the physics utilized in EQS-HBC to break the system. In this study, we present a novel attack method for EQS-HBC devices, using the body of the attacker itself as a coupling surface and capacitive inter-body coupling between the user and the attacker. We develop theoretical understanding backed by experimental results for inter-body coupling, as a function of distance between the subjects. We utilize this newly developed understanding to design EQS-HBC transmitters that minimizes the attack distance through inter-body coupling, as well as the interference among multiple EQS-HBC users due to inter-body coupling. This understanding will allow us to develop more secure and robust EQS-HBC based body area networks in the future.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1431
Author(s):  
Ilkyu Kim ◽  
Sun-Gyu Lee ◽  
Yong-Hyun Nam ◽  
Jeong-Hae Lee

The development of biomedical devices benefits patients by offering real-time healthcare. In particular, pacemakers have gained a great deal of attention because they offer opportunities for monitoring the patient’s vitals and biological statics in real time. One of the important factors in realizing real-time body-centric sensing is to establish a robust wireless communication link among the medical devices. In this paper, radio transmission and the optimal characteristics for impedance matching the medical telemetry of an implant are investigated. For radio transmission, an integral coupling formula based on 3D vector far-field patterns was firstly applied to compute the antenna coupling between two antennas placed inside and outside of the body. The formula provides the capability for computing the antenna coupling in the near-field and far-field region. In order to include the effects of human implantation, the far-field pattern was characterized taking into account a sphere enclosing an antenna made of human tissue. Furthermore, the characteristics of impedance matching inside the human body were studied by means of inherent wave impedances of electrical and magnetic dipoles. Here, we demonstrate that the implantation of a magnetic dipole is advantageous because it provides similar impedance characteristics to those of the human body.


Vaccines ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 47 ◽  
Author(s):  
Raffael Nachbagauer ◽  
Florian Krammer ◽  
Randy Albrecht

Influenza viruses cause severe diseases and mortality in humans on an annual basis. The current influenza virus vaccines can confer protection when they are well-matched with the circulating strains. However, due to constant changes of the virus surface glycoproteins, the vaccine efficacy can drop substantially in some seasons. In addition, the current seasonal influenza virus vaccines do not protect from avian influenza viruses of human pandemic potential. Novel influenza virus vaccines that aim to elicit antibodies against conserved epitopes like the hemagglutinin stalk could not only reduce the burden of drifted seasonal viruses but potentially also protect humans from infection with zoonotic and emerging pandemic influenza viruses. In this paper, we generated influenza virus vaccine constructs that express chimeric hemagglutinins consisting of exotic, avian head domains and a consistent stalk domain of a seasonal virus. Using such viruses in a sequential immunization regimen can redirect the immune response towards conserved epitopes. In this study, male ferrets received a live-attenuated vaccine virus based on the A/Ann Arbor/6/60 strain expressing a chimeric H8/1 (cH8/1) hemagglutinin, which was followed by a heterologous booster vaccination with a cH5/1N1 formalin inactivated non-adjuvanted whole virus. This group was compared to a second group that received a cH8/1N1 inactivated vaccine followed by a cH5/1N1 inactivated vaccine. Both groups showed a reduction in viral titers in the upper respiratory tract after the A(H1N1)pdm09 virus challenge. Animals that received the live-attenuated vaccine had low or undetectable titers in the lower respiratory tract. The results support the further development of chimeric hemagglutinin-based vaccination strategies. The outcome of this study confirms and corroborates findings from female ferrets primed with a A/Leningrad/134/17/57-based live attenuated cH8/1N1 vaccine followed by vaccination with an AS03-adjuvanted cH5/1N1 split virus vaccine 10.


Sign in / Sign up

Export Citation Format

Share Document