scholarly journals Alternative Splicing Dynamics of the Hypothalamus–Pituitary–Ovary Axis During Pubertal Transition in Gilts

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiangchun Pan ◽  
Qingnan Li ◽  
Danxia Chen ◽  
Wentao Gong ◽  
Nian Li ◽  
...  

The timing of puberty in mammals marks the point at which reproduction becomes possible. Abnormalities in the timing of puberty may exert a series of negative effects on subsequent health outcomes. Alternative splicing (AS) has not only emerged as a significant factor in the transcription of genes but it is also reported to play a role in the timing of puberty. However, to date, the changes and dynamics of AS during the onset of puberty is extremely seldom explored. In the present study, we used gilts as a research model to investigated the dynamics of AS and differentially expressed AS (DEAS) events within the hypothalamus–pituitary–ovary (HPO) axis across pre-, in-, and post-puberty. We detected 3,390, 6,098, and 9,085 DEAS events in the hypothalamus, pituitary, and ovary when compared across pre-, in-, and post-pubertal stages, respectively. Within the entire HPO axis, we also identified 22,889, 22,857, and 21,055 DEAS events in the pre-, in-, and post-pubertal stages, respectively. Further analysis revealed that the differentially spliced genes (DSGs) associated with staged DEAS events were likely to be enriched in the oxytocin signaling pathway, thyroid hormone signaling pathway, GnRH signaling pathway, and oocyte meiosis signaling pathway. The DSGs associated with DEAS events across the entire HPO axis were enriched in endocytosis signaling pathway, the MAPK signaling pathway, and the Rap1 signaling pathway. Moreover. the ASs of TAC1, TACR3, CYP19A1, ESR1, ESRRA, and FSHR were likely to regulate the functions of the certain HPO tissues during the onset of puberty. Collectively, the AS dynamics and DEAS events were comprehensively profiled in hypothalamus, pituitary, and ovary across the pre-, in-, and post-pubertal stages in pigs. These findings may enhance our knowledge of how puberty is regulated by AS and shed new light on the molecular mechanisms underlying the timing of puberty in mammals.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiangchun Pan ◽  
Wentao Gong ◽  
Yingting He ◽  
Nian Li ◽  
Hao Zhang ◽  
...  

Abstract Background In mammals, the ovary is the essential system of female reproduction for the onset of puberty, and the abnormal puberty has negative outcomes on health. CircRNA is a non-coding RNA produced by non-canonical alternative splicing (AS). Several studies have reported that circRNA is involved in the gene regulation and plays an important role in some human diseases. However, the contribution of circRNA has received little known within the onset of puberty in ovary. Results Here, the profiles of ovarian circRNAs across pre-, in- and post-pubertal stages were established by RNA-sEq. In total, 972 circRNAs were identified, including 631 stage-specific circRNAs and 8 tissue-specific circRNAs. The biological functions of parental genes of circRNAs were enriched in steroid biosynthesis, autophagy-animal, MAPK signaling pathway, progesterone-mediated oocyte maturation and ras signaling pathway. Moreover, 5 circRNAs derived from 4 puberty-related genes (ESR1, JAK2, NF1 and ARNT) were found in this study. The A3SS events were the most alternative splicing, but IR events were likely to be arose in post-pubertal ovaries. Besides, the circRNA-miRNA-gene networks were explored for 10 differentially expressed circRNAs. Furthermore, the head-to-tail exon as well as the expressions of 10 circRNAs were validated by the divergent RT-qPCR and sanger sequencing. Conclusions In summary, the profiles of ovarian circRNAs were provided during pubertal transition in gilts, and these results provided useful information for the investigation on the onset of puberty at the ovarian-circRNAs-level in mammals.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Rui-sheng Zhou ◽  
Xiong-Wen Wang ◽  
Qin-feng Sun ◽  
Zeng Jie Ye ◽  
Jian-wei Liu ◽  
...  

Hepatocellular carcinoma (HCC) is a primary cause of cancer-related death in the world. Despite the fact that there are many methods to treat HCC, the 5-year survival rate of HCC is still at a low level. Emodin can inhibit the growth of HCC cells invitroand invivo. However, the gene regulation of emodin in HCC has not been well studied. In our research, RNA sequencing technology was used to identify the differentially expressed genes (DEGs) in HepG2 cells induced by emodin. A total of 859 DEGs were identified, including 712 downregulated genes and 147 upregulated genes in HepG2 cells treated with emodin. We used DAVID for function and pathway enrichment analysis. The protein-protein interaction (PPI) network was constructed using STRING, and Cytoscape was used for module analysis. The enriched functions and pathways of the DEGs include positive regulation of apoptotic process, structural molecule activity and lipopolysaccharide binding, protein digestion and absorption, ECM-receptor interaction, complement and coagulation cascades, and MAPK signaling pathway. 25 hub genes were identified and pathway analysis revealed that these genes were mainly enriched in neuropeptide signaling pathway, inflammatory response, and positive regulation of cytosolic calcium ion concentration. Survival analysis showed that LPAR6, C5, SSTR5, GPR68, and P2RY4 may be involved in the molecular mechanisms of emodin therapy for HCC. A quantitative real-time PCR (qRT-PCR) assay showed that the mRNA levels of LPAR6, C5, SSTR5, GPR68, and P2RY4 were significantly decreased in HepG2 cells treated with emodin. In conclusion, the identified DEGs and hub genes in the present study provide new clues for further researches on the molecular mechanisms of emodin.


Author(s):  
Xiaowen Chen ◽  
Jianli Chen

This study intended to investigate the effects of miR-3188 on breast cancer and to reveal the possible molecular mechanisms. miR-3188 was upregulated and TUSC5 was downregulated in breast cancer tissues and MCF-7 cells compared to normal tissue and MCF-10 cells. After MCF-7 cells were transfected with miR-3188 inhibitor, cell proliferation and migration were inhibited, whereas apoptosis was promoted. Luciferase reporter assay suggested that TUSC5 was a target gene of miR-3188. In addition, miR-3188 overexpression increased the p-p38 expression, while miR-3188 suppression decreased the p-p38 expression significantly. miR-3188 regulated breast cancer progression via the p38 MAPK signaling pathway. In conclusion, miR-3188 affects breast cancer cell proliferation, apoptosis, and migration by targeting TUSC5 and activating the p38 MAPK signaling pathway. miR-3188 may serve as a potential therapeutic agent for the treatment of breast cancer.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2937-2937
Author(s):  
Manujendra N Saha ◽  
Hua Jiang ◽  
Yijun Yang ◽  
Donna Reece ◽  
Hong Chang

Abstract Abstract 2937 Mutation of p53, a tumor suppressor protein, is relatively rare (∼10% in newly diagnosed patients) in multiple myeloma (MM). However, p53 mutations/deletions are important risk factors for predicting the resistant to chemotherapy and no treatment is currently available for this subgroup of patients. MIRA-1, a novel class of small molecules with the ability to restore wild type conformation and function to mutant p53, induces apoptosis in different types of solid tumors harboring mutant p53. However, its effect on MM cells is not known. In this study we examined the ability of MIRA-1 to induce cytotoxic and apoptotic response in MM cells and inhibit tumor growth in MM mouse xenograft model. In addition, we explored the molecular mechanisms of MIRA-1-induced apoptosis in MM cells. Treatment of MM cells with MIRA-1 resulted in a time- and dose-dependent decrease in survival and increase in apoptosis of MM cells harboring either wild type (MM.1S, H929) or mutant (U266, 8226, and LP1) p53 suggesting that MIRA-induced apoptosis in MM cells is independent of p53 status. The IC50 of MIRA-1 observed in these cells was ranged between 10 and 15 μM. In addition, MIRA-1 elicited a dose-dependent inhibition of myeloma cell growth in seven primary MM samples with an average IC50of 10 μM. Two of the seven patient samples harbors p53 mutations/deletions. In contrast, MIRA-1 did not have a significant inhibitory effect on the survival of bone marrow or peripheral blood mononuclear cells obtained from three healthy donors at the concentrations (10–20 μM) that induced apoptosis of MM cells, indicating a preferential killing of myeloma cells by this drug. Apoptosis induced by MIRA-1 in MM cells harbouring either wild type or mutant p53 was associated with time- and dose-dependent activation of caspas-8, caspase-3 and PARP with subsequent up-regulation of a pro-apoptotic protein, Noxa and down-regulation of an anti-apoptotic protein, Mcl-1. Interestingly, MIRA-1 did not significantly modulate the level of p53 expression, although immunoprecipitation studies confirmed the restoration of wild type conformation of mutant p53 in LP1 and 8226 cells. Importantly, genetic knockdown of p53 using siRNA against wild type or mutant p53 had only a little effect on apoptosis induction by MIRA-1 in MM.1S or LP1 cells, respectively, confirming that apoptosis induction by MIRA-1 in MM cells is independent of p53. Furthermore, the combination of MIRA-1 with current anti-myeloma agents, dexamethasone or doxorubicin displayed synergistic cytotoxic response in MM.1S or LP1 cells (CI<1; p<0.05). To delineate the molecular mechanisms of apoptosis in MM cells induced by MIRA-1, we performed RT2 profiler PCR array analysis for the differential expression of 84 genes related to mitogen activated protein kinase (MAPK) signaling pathway. A significant number of genes of the MAPK family including MAP3K: MAP3K2 (MEKK2), MAP3K4 (MEKK4), PAK1; MAP2K: MAP2K5 (MEK5); and MAPK: MAPK11 (p38bMAPK) as well as transcription factors such as c-Jun, c-FOS, EGR1, and MKNK1, whose expression is induced by MAPK signaling, were up-regulated by more than 2-fold in MIRA-1-treated 8226 cells. On the other hand, expression of the scaffolding/anchoring genes, MAPK8IP2 (JIP-1) was down-regulated by ∼2-fold. Up-regulations of c-Jun, c-Fos, and EGR1 at their protein levels were further confirmed by Western blot analysis of MM.1S and 8226 cells treated with MIRA-1. Importantly, Western blot analysis revealed that treatment of MIRA-1 resulted in a time- and dose-dependent increase of phosphorylated p38 MAPK level in both MM.1S and 8226 cells. Taken together, our data indicates that activation of the MAPK signaling pathway is, at least in part, associated with MIRA-1-induced apoptosis of MM cells. Finally, we evaluated anti-tumorigenic potential of MIRA-1 in MM xenograft SCID mouse models. 8266 cells were inoculated into SCID mice and the mice received i.p. injections of either 100 μL PBS (control) or 10 mg/kg MIRA-1 once daily for 18 days after tumor formation was evident. Administration of MIRA-1 resulted in significant inhibition of tumor growth (p<0.05) and increase in survival (p=0.007) of the mice with no apparent toxicity. Our study for the first time demonstrates potent in vitro and in vivo anti-myeloma activity of MIRA-1 and thus providing a framework for clinical evaluation of MIRA-1 either alone or in combination with current anti-myeloma agents. Disclosures: Reece: Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Merck: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Otsuka: Honoraria, Research Funding; Millennium Pharmaceuticals: Research Funding.


2021 ◽  
Author(s):  
Yuanyuan Tian ◽  
Jiao Zhao ◽  
Ju Huang ◽  
Haiying Zhang ◽  
Fushun Ni ◽  
...  

Abstract Background:Tumor endothelial cells (TECs) play an indispensable role in tumor growth and metastasis. Compared with normal endothelial cells (NECs), TECs exhibit unique phenotypic and functional heterogeneity in terms of metabolism, genetics, and transcriptomics. It is not only the key to coordinate tumor angiogenesis, but also an important factor of immune regulation in the tumor microenvironment. In recent years, the role of TECs in tumor metabolism and invasion has been continuously reported. However, the research on the mechanism behind the complex functions of TECs is still at the basic stage. We use Oxford Nanopore Technology (ONT) three-generation full-length transcriptome sequencing to detect all genetic structural changes in the transcriptome of mouse TECs 2H-11 and mouse NECs SVEC4-10.Results: In Tumor endothelial cells 2H-11,1847genes are up-regulated and 1202 genes are down-regulated. According to the Gene ontology (GO) enrichment analysis of differentially expressed genes (DEGs), we found that different functional trends related to metabolic processes, developmental processes, localization, immune system processes, and locomotion are the main reasons for the differences. DEGs are mainly enriched in signal pathways related to cancer, immunity and metabolism, involving Pathways in cancer,Antigen processing and presentation , Proteoglycans in cancer, Focal adhesion, MAPK signaling pathway ,Protein digestion and absorption,ECM-receptor interaction,PI3K-Akt signaling pathway and Glutathione metabolism. We also obtained the structural variation of transcripts such as alternative splicing, gene fusion, and alternative polyadenylation and accurately quantified the expression of the transcript. Some of our results have been confirmed in other documents. But other data have not been reported yet, which is the focus of our future exploration.Conclusion: We try to use transcriptomics and bioinformatics methods to characterize tumor endothelial cell-related genes and signaling pathways.It could help better understand the molecular mechanisms of tumor endothelial cells involved in tumorigenesis and development. DEGs in key pathways may be potential diagnostic markers or therapeutic targets of TECs. Our data also provide useful genetic resources for improving the genome and transcriptome annotations of TECs and NECs.


2019 ◽  
Vol 39 (11) ◽  
Author(s):  
Qianjun Wang ◽  
Qianqian Yang ◽  
Ali Zhang ◽  
Zhiqiang Kang ◽  
Yingsheng Wang ◽  
...  

Abstract Heterotopic ossification (HO), the pathologic formation of extraskeletal bone, can be disabling and lethal. However, the underlying molecular mechanisms were largely unknown. The present study aimed to clarify the involvement of secreted protein acidic and rich in cysteine (SPARC) and the underlying mechanism in rat model of HO. The mechanistic investigation on roles of SPARC in HO was examined through gain- and loss-of-function approaches of SPARC, with alkaline-phosphatase (ALP) activity, mineralized nodules, and osteocalcin (OCN) content measured. To further confirm the regulatory role of SPARC, levels of mitogen-activated protein kinase (MAPK) signaling pathways-related proteins (extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), p38, nuclear factor κ-B (NF-κB), and IkB kinase β (IKKβ)) were determined. Bone marrow mesenchymal stem cells were treated with pathway inhibitor to investigate the relationship among SPARC, MAPK signaling pathway, and HO. The results suggested that SPARC expression was up-regulated in Achilles tendon tissues of HO rats. Silencing of SPARC could decrease phosphorylation of ERK, JNK, p38, NF-κB, and IKKβ. Additionally, silencing of SPARC or inhibition of MAPK signaling pathway could reduce the ALP activity, the number of mineralized nodules, and OCN content, thus impeding HO. To sum up, our study identifies the inhibitory role of SPARC gene silencing in HO via the MAPK signaling pathway, suggesting SPARC presents a potential target for HO therapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Weie Zhou ◽  
Xuefeng Zhou ◽  
Yuan Zhang ◽  
Yuyang Wang ◽  
Wenjie Wu ◽  
...  

Diabetic nephropathy (DN) is one of the common and severe microvascular complications of diabetes mellitus (DM). The occurrence and development of DN are related to multiple factors in the human body, which makes DN a complex disease, and the pathogeneses of DN have not yet been fully illustrated. Furthermore, DN lacks effective drugs for treatment nowadays. Chinese herbal medicine (CHM) often shows the feature of multicomponents, multitargets, multipathways, and synergistic effects and shows a promising source of new therapeutic drugs for DN. As a CHM, Tangshen Formula (TSF) was used to treat DN patients in China. However, its bioactive compounds and holistic pharmacological mechanisms on DN are both unclear. A network pharmacology approach was firstly applied to explore multiple active compounds and multiple key pharmacological mechanisms for TSF treating DN by drug-targeted interaction databases, herb-compound-target network, protein-protein interaction network, compound-target-pathway network, and analysis methods. And the results showed that TSF have the characteristic of multicomponents, multitargets, multipathways, and synergistic effects for treating DN. The quercetin, naringenin, kaempferol, and isorhamnetin as key active compounds and the PI3K-Akt signaling pathway, TNF signaling pathway, nonalcoholic fatty liver disease (NAFLD), focal adhesion, rap1 signaling pathway, T cell receptor signaling pathway, MAPK signaling pathway, and insulin resistance as the key molecular mechanisms play important roles in TSF treating DN. Moreover, quercetin, naringenin, kaempferol, and isorhamnetin were successfully detected in TSF by the UHPLC-MS/MS analysis method. And their concentrations were 0.224, 8.295, 0.0564, and 0.0879 mg·kg-1, respectively. The present findings not only provide new insights for a deeper understanding of the constituent basis and pharmacology of TSF but also provide guidance for further pharmacological studies on TSF.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhaoqin Wang ◽  
Yan Huang ◽  
Di Wang ◽  
Rumeng Wang ◽  
Kunshan Li ◽  
...  

Acupuncture and moxibustion have definite clinical effects on treating ulcerative colitis (UC), but their mechanism is still unclear. To investigate the molecular mechanisms, we applied herb-partitioned moxibustion or electroacupuncture at the Tianshu (ST25) points on UC rats and used RNA sequencing to identify molecular consequences. Male Sprague Dawley (SD) rats were divided into 6 groups randomly: the normal control (NC) group, the control + herb-partitioned moxibustion (NCHM) group, the control + electroacupuncture (NCEA) group, the model (UC) group, the model + herb-partitioned moxibustion (UCHM) group, and the model + electroacupuncture (UCEA) group. Compared to the UC group, HE staining in the UCHM group and UCEA group indicated that colitis was relieved, the histopathological score and MPO were both significantly reduced, and the serum hs-CRP concentration was decreased significantly. The results of RNA-seq suggested that, compared to the NC group, 206 upregulated genes and 167 downregulated genes were identified in colon tissues from the UC group; compared to the UC group, the expression levels of some genes were both affected in the UCHM group and the UCEA group (684 differentially expressed genes were identified in the UCHM group, and 1182 differentially expressed genes were identified in the UCEA group). KEGG signal pathway analysis indicated that the differentially expressed genes in the UCHM group were associated with the JAK-STAT signaling pathway and cell adhesion molecule (CAM); the differentially expressed genes in the UCEA group were associated with the NF-κB signaling pathway, the toll-like receptor signaling pathways, the PI3K-Akt signaling pathway, the MAPK signaling pathway, and the Wnt signaling pathway. This is the first study to reveal the gene expression characteristics of the anti-inflammatory effect of UC rats from the perspective of acupuncture and moxibustion control, which provide a clue for further investigation into the molecular mechanisms of UC treatment by acupuncture and moxibustion.


2019 ◽  
Vol 5 (suppl) ◽  
pp. 41-41
Author(s):  
ChunXia Su ◽  
Juan Zhou ◽  
Xiangling Chu ◽  
Jing Zhao

41 Background: Lung cancer is the most common cause of mortality in both men and women, accounting for one-quarter of all cancer deaths. Most lung cancer-associated deaths result from metastasis, especially brain metastasis. Metastasis associated mutations are important biomarkers for metastasis prediction and outcome improvement. The current study aimed to reveal the molecular mechanisms and the genetic alterations involved in metastasis from lung tumors to the brain. Methods: We carried out whole exome sequencing (WES) of the primary tumors and the corresponding brain metastases from 15 patients with metastatic non-small-cell lung carcinoma. Results: We identified novel lung cancer metastases associated genes (CHEK2P2, BAGE2, AHNAK2) and epigenetic factors (miR-4436A, miR-6077). Lung-brain metastasis samples have more similar Ti/Tv(transition/transversion) profile with brain cancer. Focal adhesion, PI3K-Akt signaling pathway, MAPK signaling pathway are some of the most important tumor onset and metastasis pathways. Alternative splicing, Methylation and EGF-like domain are important metabolic abnormal for the lung-metastasis cancers. Conclusions: We conducted a pairwise lung-brain metastasis based WES and identified some novel metastasis related mutations which provided potential biomarkers for prognosis and targeted therapeutics.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai Xing ◽  
Kejun Wang ◽  
Hong Ao ◽  
Shaokang Chen ◽  
Zhen Tan ◽  
...  

Abstract Fatness traits are important in pigs because of their implications for fattening efficiency, meat quality, reproductive performance and immunity. Songliao black pigs and Landrace pigs show important differences in production and meat quality traits, including fatness and muscle growth. Therefore, we used a high-throughput massively parallel RNA-seq approach to identify genes differentially expressed in backfat tissue between these two breeds (six pigs in each). An average of 37.87 million reads were obtained from the 12 samples. After statistical analysis of gene expression data by edgeR, a total of 877 differentially expressed genes were detected between the two pig breeds, 205 with higher expression and 672 with lower expression in Songliao pigs. Candidate genes (LCN2, CES3, DGKB, OLR1, LEP, PGM1, PCK1, ACACB, FADS1, FADS2, MOGAT2, SREBF1, PPARGC1B) with known effects on fatness traits were included among the DEGs. A total of 1071 lncRNAs were identified, and 85 of these lncRNAs were differentially expressed, including 53 up-regulated and 32 down-regulated lncRNAs, respectively. The differentially expressed genes and lncRNAs involved in glucagon signaling pathway, glycolysis/gluconeogenesis, insulin signaling pathway, MAPK signaling pathway and so on. Integrated analysis potential trans-regulating or cis-regulating relation between DEGs and DE lncRNAs, suggested lncRNA MSTRG.2479.1 might regulate the expressed level of VLDLR affecting porcine fat metabolism. These results provide a number of candidate genes and lncRNAs potentially involved in porcine fat deposition and provide a basis for future research on the molecular mechanisms underlying in fat deposition.


Sign in / Sign up

Export Citation Format

Share Document