scholarly journals Curcumin-Loaded Hydrophobic Surface-Modified Hydroxyapatite as an Antioxidant for Sarcopenia Prevention

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 616
Author(s):  
Ya-Jyun Liang ◽  
I-Hsuan Yang ◽  
Yi-Wen Lin ◽  
Jhih-Ni Lin ◽  
Chang-Chin Wu ◽  
...  

Oxidative stress and later-induced chronic inflammation have been reported to play an important role on the progression of sarcopenia. Current treatments for sarcopenia are mainly administered to patients whom sarcopenia already developed. However, there has been no promising results shown in therapy. Therefore, the development of therapeutic and preventive strategies against sarcopenia would be necessary. Curcumin is a traditional medicine that possesses anti-inflammatory and antioxidative properties. In the present study, hydroxyapatite was subjected to hydrophobic surface modifications for curcumin loading (Cur-SHAP). It was, subsequently, utilized for delivery to the patient’s body via intramuscular injection in order to achieve constant release for more than 2 weeks, preventing the progression of the sarcopenia or even leading to recovery from the early stage of the illness. According to the results of WST-1, LIVE/DEAD, DCFDA, and gene expression assays, Cur-SHAP exhibited good biocompatibility and showed great antioxidant/anti-inflammatory effects through the endocytic pathway. The results of the animal studies showed that the muscle endurance, grip strength, and fat/lean mass ratio were all improved in Cur-SHAP-treated rats from LPS-induced sarcopenia. In summary, we successfully synthesized hydrophobic surface modification hydroxyapatite for curcumin loading (Cur-SHAP) and drug delivery via the IM route. The LPS-induced sarcopenia rats were able to recover from disease after the Cur-SHAP treatment.

2021 ◽  
Vol 22 (6) ◽  
pp. 3023
Author(s):  
Sean T. Ryan ◽  
Elham Hosseini-Beheshti ◽  
Dinara Afrose ◽  
Xianting Ding ◽  
Binbin Xia ◽  
...  

Over the past two decades, mesenchymal stromal cells (MSCs) have demonstrated great potential in the treatment of inflammation-related conditions. Numerous early stage clinical trials have suggested that this treatment strategy has potential to lead to significant improvements in clinical outcomes. While promising, there remain substantial regulatory hurdles, safety concerns, and logistical issues that need to be addressed before cell-based treatments can have widespread clinical impact. These drawbacks, along with research aimed at elucidating the mechanisms by which MSCs exert their therapeutic effects, have inspired the development of extracellular vesicles (EVs) as anti-inflammatory therapeutic agents. The use of MSC-derived EVs for treating inflammation-related conditions has shown therapeutic potential in both in vitro and small animal studies. This review will explore the current research landscape pertaining to the use of MSC-derived EVs as anti-inflammatory and pro-regenerative agents in a range of inflammation-related conditions: osteoarthritis, rheumatoid arthritis, Alzheimer’s disease, cardiovascular disease, and preeclampsia. Along with this, the mechanisms by which MSC-derived EVs exert their beneficial effects on the damaged or degenerative tissues will be reviewed, giving insight into their therapeutic potential. Challenges and future perspectives on the use of MSC-derived EVs for the treatment of inflammation-related conditions will be discussed.


Author(s):  
Ting Wan Tan ◽  
Han Ling Tan ◽  
Man Na Chang ◽  
Wen Shu Lin ◽  
Chih Ming Chang

(1) Background: The implementation of effective control measures in a timely fashion is crucial to control the epidemic outbreak of COVID-19. In this study, we aimed to analyze the control measures implemented during the COVID-19 outbreak, as well as evaluating the responses and outcomes at different phases for epidemic control in Taiwan. (2) Methods: This case study reviewed responses to COVID-19 and the effectiveness of a range of control measures implemented for epidemic control in Taiwan and assessed all laboratory-confirmed cases between 11 January until 20 December 2020, inclusive of these dates. The confirmation of COVID-19 infection was defined as the positive result of a reverse-transcriptase–polymerase-chain-reaction test taken from a nasopharyngeal swab. Test results were reported by the Taiwan Centers for Disease Control. The incidence rate, mortality rate, and testing rate were compiled, and the risk ratio was provided to gain insights into the effectiveness of prevention measures. (3) Results and Discussion: This study presents retrospective data on the COVID-19 incidence rate in Taiwan, combined with the vital preventive control measures, in a timeline of the early stage of the epidemic that occurred in Taiwan. The implementation of multiple strategy control measures and the assistance of technologies to control the COVID-19 epidemic in Taiwan led to a relatively slower trend in the outbreak compared to the neighboring countries. In Taiwan, 766 confirmed patients were included, comprised of 88.1% imported cases and 7.2% local transmission cases, within the studied period. The incidence rate of COVID-19 in Taiwan during the studied period was 32 per million people, with a mortality rate of 0.3 per million people. Our analysis showed a significantly raised incidence risk ratio in the countries of interest in comparison to Taiwan during the study period; in the range of 1.9 to 947.5. The outbreak was brought under control through epidemic policies and hospital strategies implemented by the Taiwan Government. (4) Conclusion: Taiwan’s preventive strategies resulted in a drastically lower risk for Taiwan nationals of contracting COVID-19 when new pharmaceutical drug or vaccines were not yet available. The preventive strategies employed by Taiwan could serve as a guide and reference for future epidemic control strategies.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qiangqiang Zhao ◽  
Duanfeng Jiang ◽  
Xiaoying Sun ◽  
Qiuyu Mo ◽  
Shaobin Chen ◽  
...  

Abstract Background Non-Hodgkin’s lymphoma (NHL) is a malignant disease of lymphoid tissue. At present, chemotherapy is still the main method for the treatment of NHL. R-CHOP can significantly improve the survival rate of patients. Unfortunately, DOX is the main cytotoxic drug in R-CHOP and it can lead to adverse reactions. Therefore, it is particularly important to uncover new treatment options for NHL. Results In this study, a novel anti-tumor nanoparticle complex Nm@MSNs-DOX/SM was designed and constructed in this study. Mesoporous silica nanoparticles (MSNs) loaded with Doxorubicin (DOX) and anti-inflammatory drugs Shanzhiside methylester (SM) were used as the core of nanoparticles. Neutrophil membrane (Nm) can be coated with multiple nanonuclei as a shell. DOX combined with SM can enhance the anti-tumor effect, and induce apoptosis of lymphoma cells and inhibit the expression of inflammatory factors related to tumorigenesis depending on the regulation of Bcl-2 family-mediated mitochondrial pathways, such as TNF-α and IL-1β. Consequently, the tumor microenvironment (TME) was reshaped, and the anti-tumor effect of DOX was amplified. Besides, Nm has good biocompatibility and can enhance the EPR effect of Nm@MSNs-DOX/SM and increase the effect of active targeting tumors. Conclusions This suggests that the Nm-modified drug delivery system Nm@MSNs-DOX/SM is a promising targeted chemotherapy and anti-inflammatory therapy nanocomplex, and may be employed as a specific and efficient anti-Lymphoma therapy.


2021 ◽  
pp. 026988112110264
Author(s):  
Emma Kopra ◽  
Valeria Mondelli ◽  
Carmine Pariante ◽  
Naghmeh Nikkheslat

Background: Ketamine is a novel rapid-acting antidepressant with high efficacy in treatment-resistant patients. Its exact therapeutic mechanisms of action are unclear; however, in recent years its anti-inflammatory properties and subsequent downstream effects on tryptophan (TRP) metabolism have sparked research interest. Aim: This systematic review examined the effect of ketamine on inflammatory markers and TRP–kynurenine (KYN) pathway metabolites in patients with unipolar and bipolar depression and in animal models of depression. Methods: MEDLINE, Embase, and PsycINFO databases were searched on October 2020 (1806 to 2020). Results: Out of 807 initial results, nine human studies and 22 animal studies on rodents met the inclusion criteria. Rodent studies provided strong support for ketamine-induced decreases in pro-inflammatory cytokines, namely in interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α and indicated anti-inflammatory effects on TRP metabolism, including decreases in the enzyme indoleamine 2,3-dioxygenase (IDO). Clinical evidence was less robust with high heterogeneity between sample characteristics, but most experiments demonstrated decreases in peripheral inflammation including in IL-1β, IL-6, and TNF-α. Preliminary support was also found for reduced activation of the neurotoxic arm of the KYN pathway. Conclusion: Ketamine appears to induce anti-inflammatory effects in at least a proportion of depressed patients. Suggestions for future research include investigation of markers in the central nervous system and examination of clinical relevance of inflammatory changes.


2003 ◽  
Vol 285 (3) ◽  
pp. G556-G565 ◽  
Author(s):  
C. Linard ◽  
A. Ropenga ◽  
M. C. Vozenin-Brotons ◽  
A. Chapel ◽  
D. Mathe

The small bowel is an important dose-limiting organ in abdominal radiotherapy because irradiation can cause acute enteritis that, in turn, leads to progressively reduced motility and finally, in a later phase, to fibrosis. Because these clinical symptoms may be caused by the early stage of an inflammatory process, we characterized the radiation-induced intestinal inflammation in rats. Abdominal γ-irradiation (10-Gy) induced a cascade of inflammatory events characterized by an early (6 h after exposure) increase in IL-1β, TNF-α, and IL-6 mRNA levels in the rat ileal muscularis layer. IL-8 [a cytokine-induced neutrophil chemoattractant (CINC)] mRNA appeared later (at 3 days). The expression of TGF-β (a profibrotic cytokine) was higher in irradiated than control tissue at day 1, whereas IL-10 (an anti-inflammatory cytokine) expression vanished completely. Despite strong IL-1ra expression, the IL-1ra/IL-1β ratio, which is an indicator of inflammatory balance, was -41% at day 1 in irradiated compared with control tissue. The nuclear transcription factors NF-κB and activator protein-1 (AP-1) govern transcription of these genes, directly or indirectly. Although expression of the subunits of NF-κB (p65, p50) and AP-1 (c- fos, c- jun) did not increase, irradiation caused a rapid and persistent translocation of p65 and p50. An imbalance between proinflammatory and anti-inflammatory mediators may contribute to perpetuating intestinal inflammation, thus making it chronic.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wen-Yan Yu ◽  
Liang-Xiao Ma ◽  
Zhou Zhang ◽  
Jie-Dan Mu ◽  
Tian-Yi Sun ◽  
...  

The low adverse effects of acupuncture for primary dysmenorrhea (PD), known as one of the most commonly reported gynecological debilitating conditions affecting women’s overall health, have been thus far confirmed. Moreover, it has been increasingly recognized that inflammation is involved in such menstrual cramps, and recent studies have further shown that the anti-inflammatory effects of acupuncture are helpful in its control. This review portrays the role of inflammation in PD pathophysiology, provides evidence from clinical and animal studies on acupuncture for inflammation-induced visceral pain, and reflects on acupuncture-related therapies for dysmenorrhea with regard to their anti-inflammatory characteristics. Further research accordingly needs to be carried out to clarify the effects of acupuncture on proinflammatory factors in PD, particularly chemokines and leukocytes. Future studies on this condition from an anti-inflammatory perspective should be also performed in line with the notion of emphasizing stimulation modes to optimize the clinical modalities of acupuncture. Additionally, the effects and mechanism of more convenient self-healing approaches such as TENS/TEAS for PD should be investigated.


Blood ◽  
1997 ◽  
Vol 89 (5) ◽  
pp. 1621-1628 ◽  
Author(s):  
Hiroaki Niiro ◽  
Takeshi Otsuka ◽  
Kenji Izuhara ◽  
Kunihiro Yamaoka ◽  
Koichi Ohshima ◽  
...  

Neutrophils are important effector cells of acute inflammation because of their potential capacity to synthesize various proinflammatory mediators, and inhibition of their production is expected to result in anti-inflammatory effects. In this study, we investigate the effects of the anti-inflammatory cytokines, interleukin-10 (IL-10) and IL-4, on prostanoid synthesis in human neutrophils. Neutrophils isolated from healthy donors constitutively produced a small amount of prostaglandin E2 (PGE2 ) without any stimulations, whereas they produced a large amount of PGE2 after lipopolysaccharide (LPS) stimulation. IL-10 and IL-4 selectively inhibited their LPS-induced PGE2 production. Inhibition by both cytokines occurred at an early stage of LPS stimulation. Anti–IL-10 treatment of LPS-stimulated neutrophils resulted in enhanced PGE2 production. LPS-induced PGE2 and thromboxane B2 (TXB2 ) production in aspirin-treated neutrophils was significantly inhibited by IL-10, IL-4, and NS-398. Moreover, IL-10 and IL-4 inhibited LPS-induced cyclooxygenase (COX) activity in neutrophils. Western blot and immunocytochemical analysis showed that COX-2 protein was clearly induced in LPS-stimulated neutrophils and that its induction was inhibited by both IL-10 and IL-4. Moreover, both of these cytokines inhibited COX-2 mRNA expression in LPS-stimulated neutrophils. These results raise the possibility that these two cytokines may both offer potent clinical utility as anti-inflammatory agents in the future.


2017 ◽  
Vol 5 (3) ◽  
pp. 551-560 ◽  
Author(s):  
Clara R. Correia ◽  
Joana Gaifem ◽  
Mariana B. Oliveira ◽  
Ricardo Silvestre ◽  
João F. Mano

The interaction of human monocytes with different surface modified poly(l-lactic acid) films was evaluated. All surface modified films disrupted the balance of macrophage polarization towards a favorable anti-inflammatory profile, particularly after an LPS stimulus.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Na-Young Park ◽  
Giuseppe Valacchi ◽  
Yunsook Lim

Inflammatory response is considered the most important period that regulates the entire healing process. Conjugated linoleic acid (CLA), a class of linoleic acid positional and geometric isomers, is well known for its antioxidant and anti-inflammatory properties. We hypothesized that dietary CLA supplementation accelerates cutaneous wound healing by regulating antioxidant and anti-inflammatory functions. To investigate wound closure rates and inflammatory responses, we used a full-thickness excisional wound model after 2-week treatments with control, 0.5%, or 1% CLA-supplemented diet. Mice fed dietary CLA supplementation had reduced levels of oxidative stress and inflammatory markers. Moreover, the wound closure rate was improved significantly in mice fed a 1% CLA-supplemented diet during early stage of wound healing (inflammatory stage). We conclude that dietary CLA supplementation enhances the early stage of cutaneous wound healing as a result of modulating oxidative stress and inflammatory responses.


Sign in / Sign up

Export Citation Format

Share Document