scholarly journals Identification of Red Pigments Produced by Cheese-Ripening Bacterial Strains of Glutamicibacter arilaitensis Using HPLC

Dairy ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 396-410
Author(s):  
Nuthathai Sutthiwong ◽  
Piyada Sukdee ◽  
Supaporn Lekhavat ◽  
Laurent Dufossé

Glutamicibacter arilaitensis is one of the predominant bacterial species involved in the coloration of cheese rinds, especially smear-ripened cheeses. Besides well-known yellow-pigmented carotenoids, this species exhibits an ability to produce red pigments, as the occurrence of pink/red formation was previously found when co-cultured with a fungal strain. In this work, the red pigments synthesized by G. arilaitensis strains grown on cheese-based (curd) solid medium deacidified using Debaryomyces hansenii were identified. The analyses using HPLC equipped with both fluorescence and diode array detectors were performed to characterize the pigments extracted from a dry matter of the medium inoculated with either G. arilaitensis Re117, Po102, or Stp101. Based on the UV–vis absorption spectra, the elution order, and fluorescent property, compared to those of the porphyrin standards, eight metal-free porphyrins, including UPI, UPIII, 7PI, 6PI, 5PI, CPI, CPIII, and MPIX, were indicated as components of the red pigments produced by these G. arilaitensis strains. However, following the chromatographic profiles, the degree of porphyrins formed by each strain was apparently different. Regardless of precise quantitative measurement, the type strains Re117 and Po102 manifested a potential to produce a high amount of CPIII, whereas MPIX was formed by the strains Po102 and Stp101, but exceptionally high by the strain Stp101. The variation in both yield and form of the red pigments synthesized by the cheese-related bacterial G. arilaitensis has not previously been reported; therefore, our results provide the first information on these aspects.

Foods ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 190 ◽  
Author(s):  
Nuthathai Sutthiwong ◽  
Mireille Fouillaud ◽  
Laurent Dufossé

Arthrobacter arilaitensis is a food-related bacterial species under investigation for its involvement in the coloration of surface-ripened cheeses. Presently, information about this species in association with the development of appropriate cheese coloration is still lacking. This study was performed in order to investigate—with the use of spectrocolorimetry—the influence of pH, NaCl, and deacidifying yeasts on the pigmentation of Arthrobacter arilaitensis biofilms. Three types of cheese-based (curd) solid media were prepared by using different deacidification methods: (i) chemical deacidification by NaOH (CMNaOH); (ii) biological deacidification by the yeast strain Debaryomyces hansenii 304 (CMDh304); and (iii) biological deacidification by the yeast strain Kluyveromyces marxianus 44 (CMKm44). Each medium was prepared with initial pH values of 5.8, 7.0, and 7.5. After pasteurization, agar was incorporated and NaCl was added in varying concentrations (0%, 2%, 4%, and 8% (w/v)). A. arilaitensis Po102 was then inoculated on the so prepared “solid-curd” media, and incubated at 12 °C under light conditions for 28 days. According to the data obtained by spectrocolorimetry in the Compagnie Internationale de l’Eclairage (CIE) L*a*b* color system, all controlled factors appeared to affect the pigments produced by the A. arilaitensis strain. NaCl content in the media showed distinct inhibitory effects on the development of color by this strain when the initial pH was at 5.8. By contrast, when the initial pH of the media was higher (7.0, 7.5), only the highest concentration of NaCl (8%) had this effect, while the coloring capacity of this bacterial species was always higher when D. hansenii 304 was used for deacidification compared to K. marxianus 44.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 451
Author(s):  
Pablo Mier ◽  
Miguel A. Andrade-Navarro

Low complexity regions (LCRs) in proteins are characterized by amino acid frequencies that differ from the average. These regions evolve faster and tend to be less conserved between homologs than globular domains. They are not common in bacteria, as compared to their prevalence in eukaryotes. Studying their conservation could help provide hypotheses about their function. To obtain the appropriate evolutionary focus for this rapidly evolving feature, here we study the conservation of LCRs in bacterial strains and compare their high variability to the closeness of the strains. For this, we selected 20 taxonomically diverse bacterial species and obtained the completely sequenced proteomes of two strains per species. We calculated all orthologous pairs for each of the 20 strain pairs. Per orthologous pair, we computed the conservation of two types of LCRs: compositionally biased regions (CBRs) and homorepeats (polyX). Our results show that, in bacteria, Q-rich CBRs are the most conserved, while A-rich CBRs and polyA are the most variable. LCRs have generally higher conservation when comparing pathogenic strains. However, this result depends on protein subcellular location: LCRs accumulate in extracellular and outer membrane proteins, with conservation increased in the extracellular proteins of pathogens, and decreased for polyX in the outer membrane proteins of pathogens. We conclude that these dependencies support the functional importance of LCRs in host–pathogen interactions.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
M’hamed BENADA ◽  
Boualem BOUMAAZA ◽  
Sofiane BOUDALIA ◽  
Omar KHALADI

Abstract Background The development of ecofriendly tools against plant diseases is an important issue in crop protection. Screening and selection process of bacterial strains antagonists of 2 pathogenic bacterial species that limit very important crops, Erwinia amylovora, the causal agent of the fire blight disease, and Pectobacterium carotovorum, the causal agent of bacterial potato soft rot, were reported. Bacterial colonies were isolated from different ecological niches, where both pathogens were found: rhizosphere of potato tubers and fruits and leaves of pear trees from the northwest region of Algeria. Direct and indirect confrontation tests against strains of E. amylovora and P. carotovorum were performed. Results Results showed a significant antagonistic activity against both phytopathogenic species, using direct confrontation method and supernatants of cultures (p<0.005). In vitro assays showed growth inhibitions of both phytopathogenic species. Furthermore, results revealed that the strains of S. plymuthica had a better inhibitory effect than the strains of P. fluorescens against both pathogens. In vivo results on immature pear fruits showed a significant decrease in the progression of the fire blight symptoms, with a variation in the infection index from one antagonistic strain to another between 31.3 and 50%, and slice of potato showed total inhibition of the pathogen (P. carotovorum) by the antagonistic strains of Serratia plymuthica (p<0.005). Conclusion This study highlighted that the effective bacteria did not show any infection signs towards plant tissue, and considered as a potential strategy to limit the fire blight and soft rot diseases.


2003 ◽  
Vol 69 (7) ◽  
pp. 4012-4018 ◽  
Author(s):  
Ariel Maoz ◽  
Ralf Mayr ◽  
Siegfried Scherer

ABSTRACT The temporal stability and diversity of bacterial species composition as well as the antilisterial potential of two different, complex, and undefined microbial consortia from red-smear soft cheeses were investigated. Samples were collected twice, at 6-month intervals, from each of two food producers, and a total of 400 bacterial isolates were identified by Fourier-transform infrared spectroscopy and 16S ribosomal DNA sequence analysis. Coryneform bacteria represented the majority of the isolates, with certain species being predominant. In addition, Marinolactobacillus psychrotolerans, Halomonas venusta, Halomonas variabilis, Halomonas sp. (106 to 107 CFU per g of smear), and an unknown, gram-positive bacterium (107 to 108 CFU per g of smear) are described for the first time in such a consortium. The species composition of one consortium was quite stable over 6 months, but the other consortium revealed less diversity of coryneform species as well as less stability. While the first consortium had a stable, extraordinarily high antilisterial potential in situ, the antilisterial activity of the second consortium was lower and decreased with time. The cause for the antilisterial activity of the two consortia remained unknown but is not due to the secretion of soluble, inhibitory substances by the individual components of the consortium. Our data indicate that the stability over time and a potential antilisterial activity are individual characteristics of the ripening consortia which can be monitored and used for safe food production without artificial preservatives.


2008 ◽  
Vol 54 (6) ◽  
pp. 501-508 ◽  
Author(s):  
Karina Cogo ◽  
Michelle Franz Montan ◽  
Cristiane de Cássia Bergamaschi ◽  
Eduardo D. Andrade ◽  
Pedro Luiz Rosalen ◽  
...  

The aim of this in vitro study was to evaluate the effects of nicotine, cotinine, and caffeine on the viability of some oral bacterial species. It also evaluated the ability of these bacteria to metabolize those substances. Single-species biofilms of Streptococcus gordonii , Porphyromonas gingivalis , or Fusobacterium nucleatum and dual-species biofilms of S. gordonii – F. nucleatum and F. nucleatum – P. gingivalis were grown on hydroxyapatite discs. Seven species were studied as planktonic cells, including Streptococcus oralis , Streptococcus mitis , Propionibacterium acnes , Actinomyces naeslundii , and the species mentioned above. The viability of planktonic cells and biofilms was analyzed by susceptibility tests and time-kill assays, respectively, against different concentrations of nicotine, cotinine, and caffeine. High-performance liquid chromatography was performed to quantify nicotine, cotinine, and caffeine concentrations in the culture media after the assays. Susceptibility tests and viability assays showed that nicotine, cotinine, and caffeine cannot reduce or stimulate bacterial growth. High-performance liquid chromatography results showed that nicotine, cotinine, and caffeine concentrations were not altered after bacteria exposure. These findings indicate that nicotine, cotinine, and caffeine, in the concentrations used, cannot affect significantly the growth of these oral bacterial strains. Moreover, these species do not seem to metabolize these substances.


2021 ◽  
Author(s):  
Babacar Mbaye ◽  
Cheikh Ibrahima LO ◽  
Niokhor Dione ◽  
Sarah Benabdelkader ◽  
Maryam Tidjani Alou ◽  
...  

Abstract Strains Marseille-P3761 and Marseille-P3195 are representatives of two bacterial species isolated from human specimens. Strain Marseille-P3761 was isolated from the stool of a healthy volunteer, while strain Marseille-P3915 was cultivated from the urine of a kidney transplant recipient. Both strains are anaerobic Gram-positive cocci bacteria. Both are catalase-negative and oxidase-negative and grow optimally at 37°C in anaerobic conditions. They also metabolize carbohydrates such as galactose, glucose, fructose, and glycerol. The major fatty acids were hexadecanoic acid for both strains, Marseille-P3761 (38%) and Marseille-P3195 (31%). The highest DNA-DNA hybridization values of Marseille-P3761 and Marseille-P3195 strains when compared to their closest phylogenetic relatives were 52.3% and 56.4%, respectively. The morphological, biochemical, phenotypic and genomic characteristics strongly support that these strains are new members of the Peptoniphilus genus. Thus, we suggest that strains Marseille-P3761 (CSUR P3761 = CCUG71569) and Marseille-P3195 (CSUR P3195 = DSM 103468) are the type strains of two new Peptoniphilus species, for which we propose the names Peptoniphilus colimassiliensis sp. nov. and Peptoniphilus urinimassiliensis sp. nov., respectively.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4958
Author(s):  
Jessa Marie V. Makabenta ◽  
Jungmi Park ◽  
Cheng-Hsuan Li ◽  
Aritra Nath Chattopadhyay ◽  
Ahmed Nabawy ◽  
...  

Biofilm infections are a global public health threat, necessitating new treatment strategies. Biofilm formation also contributes to the development and spread of multidrug-resistant (MDR) bacterial strains. Biofilm-associated chronic infections typically involve colonization by more than one bacterial species. The co-existence of multiple species of bacteria in biofilms exacerbates therapeutic challenges and can render traditional antibiotics ineffective. Polymeric nanoparticles offer alternative antimicrobial approaches to antibiotics, owing to their tunable physico-chemical properties. Here, we report the efficacy of poly(oxanorborneneimide) (PONI)-based antimicrobial polymeric nanoparticles (PNPs) against multi-species bacterial biofilms. PNPs showed good dual-species biofilm penetration profiles as confirmed by confocal laser scanning microscopy. Broad-spectrum antimicrobial activity was observed, with reduction in both bacterial viability and overall biofilm mass. Further, PNPs displayed minimal fibroblast toxicity and high antimicrobial activity in an in vitro co-culture model comprising fibroblast cells and dual-species biofilms of Escherichia coli and Pseudomonas aeruginosa. This study highlights a potential clinical application of the presented polymeric platform.


2016 ◽  
Vol 3 (1) ◽  
pp. 65-66
Author(s):  
Arumugasamy K ◽  
Nantha Kumar R ◽  
Abdul Kaffoor H ◽  
Shalimol A

The methanolic rhizome extract of A. calcarata was evaluated for its antibacterial activities against five bacterial strains Pseudomonas aeuroginosa, Proteus vulgaris, Salmonella paratyphi, Bacillus thurungiensis and Staphylococcus faccealis. The extract has inhibited all the tested bacterial species with different manner at various concentration. However the higher level zone of inhibition in 400 (mg/ml) is significant against all the above said bacterial strains of these Salmonella paratyphi. Based on the present study it can be conculuded that the plant rhizome possess potent anti bacterial activity.


2019 ◽  
Vol 5 ◽  
pp. 38-56 ◽  
Author(s):  
Khulod A. Hemida ◽  
Amany M.M. Reyad

Salinity is one of the most dangerous environmental limiting factors of the plant productivity. A wide range of adaptation strategies is required to overcome salinity stress. However, such strategies seem to be long drawn and cost-intensive. It has been confirmed in recent years that plant growth promoting endophytes (PGPEs) that have the ability to further build a symbiotic association with their host to improve host plant salt tolerance. In our investigation try to improve plant salt tolerance using different species of endophytic bacteria. From the total eight endophytic bacterial species were isolated from root, stem, and leaf of Carthamustinctorius (safflower) plant, two isolates were capable of using 1-aminocyclopropane-1-carboxylic acid (ACC) as a sole nitrogen source, and they are of positive results for (ACC) deaminase activity and indole-3-acetic acid (IAA) production. The bacterial isolates were identified using 16S ribosomal DNA technique as Bacillus cereus and Bacillus aerius and had accession numbers MG708176 and MG711593 respectively, by submitting their sequences in GenBank database. This study showed that the bacterial strains B. cereus and B. aerius are valuable biological plant growth promoters that could enhance salt tolerance in Safflower plants under 100, 200, and 300mMNaCl levels resulting in an increase in plant growth and ascorbate-glutathione redox cycle, in comparison with the non-inoculated controls. Our findings reported that the co-inoculation of the two selected endophytic bacteria strains were successfully isolated from Safflower seedlings significantly alleviated the harmful effects of salt stress, promoted plant growth and biomass yield.


2021 ◽  
Author(s):  
Rahat Nawaz ◽  
Sayed Tayyab Raza Naqvi ◽  
Batool Fatima ◽  
Nazia Zulfiqar ◽  
Muhammad Umer Farooq ◽  
...  

Abstract Nonwoven cotton fabric has been fabricated and designed for antibacterial applications using low cost and ecofriendly precursors. The treatment of fabric with alkali leads to formation of active sites. The surfaces were dip coated with silver nanaoparticles and chitosan. The surface was chlorinated in next step to transform amide (N-H) groups in chitosan into N-halamine (N-Cl). The modified and unmodified surfaces of the nonwoven cotton fabric have been characterized by FTIR, SEM, and XRD. The active chlorine loading is measured with iodine/ sodium thiosulphate. The antimicrobial activity and cell toxicity assay were carried out with and without modifications of nonwoven cotton fabric. The antimicrobial efficacies of loaded fabric were evaluated against four bacterial species (Micrococcus lutes, Staphylococcus aurea, Enterobacter aerogenes, and E.coli). It was found that modified fabric exhibited superior efficiency against gram-positive and gram-negative bacterial strains as compared to their bulk counterparts upon exposure without destroying and affecting fabric nature. The overall process is economical for commercial purposes. The modified fabric can be used for antimicrobial, health, and food packaging industries, and in other biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document